Переработка сигналов кортикальными нейронами
Объединение клеток и клеточных связей внутри коры в горизонтальные слои могло бы навести на мысль, что главные взаимодействия в мозге осуществляются в горизонтальных плоскостях. Однако в 1930-х годах испанский цитолог Рафаэль Лоренте де Но, впервые занявшийся детальным изучением ориентации нейронов коры, высказал предположение, что корковые процессы имеют локальный характер и происходят в пределах вертикальных ансамблей, или колонок, т.е. таких структурных единиц, которые юхватывают все слои снизу доверху.
В начале 60-х годов 20-го столетия эта точка зрения получила убедительное подтверждение. Наблюдая реакции кортикальных клеток на сенсорные стимулы при медленном продвижении тонких электродов сквозь толщу коры, американский физиолог Вернон Б. Маунткасл сравнивал характер регистрируемых ответов внутри вертикально организованных структур. Главный вывод заключался в том, что сенсорные сигналы, идущие от одного и того же участка, возбуждают группу нейронов, расположенных по вертикали.
Некоторые ганглиозные клетки сетчатки возбуждаются тогда, когда свет падает в центр их рецептивного поля, и затормаживаются, если он попадает на его периферию; другие – наоборот. Можно сказать, что одни клетки сетчатки положительно реагируют на бублик, а другие – на дырку от бублика. На сплошное круглое пятно света такие клетки могут вообще никак не ответить, так как тормозящее действие света, попадающего в центр рецептивного поля, уравновешивает активирующий эффект освещения краев.
Эксперименты, проведенные американским физиологом Стивеном Куффлером в середине 50-х годов прошлого столетия показали, почему ученым не удавалось понять, как «видит» сетчатка, если они использовали рассеянный свет. Такой свет стимулировал многие соседние нейроны с рецептивными полями разного типа, и обусловленное этим «уравнивание» эффекта ослабляло реакцию исследуемых ганглиозных клеток. Но воздействие небольшими локальными стимулами ведет к хорошо воспроизводимой реакции определенных групп ганглиозных клеток.
Спустя несколько лет Дэвид Хьюбел и Торстен Визель применили тот же метод дискретных импульсов для активации нейронов латерального коленчатого тела у кошки и обезьяны. Ответные реакции оказались весьма сходными с теми, которые наблюдалисьраньше при изучении рецептивных полей ганглиозных клеток сетчатки. В коленчатом теле тоже выявились нейроны с характерными рецептивными полями, напоминающими по форме малннькие бублики, в которых возбуждающей областью был либо центр, либо периферия. Тормозящий эффект периферии или центра прямо определялся тем, какая ганглиозная клетка активировала данную клетку коленчатого тела.
На основании этих результатов авторы сделали вывод, что обработка зрительной информации начинается со сравнения количества света, падающего на любой небольшой участок сетчатки, с уровнем света вокруг него. Продвигая электрод вертикально вниз через слои коленчатого тела, они обнаружили ряд клеток, которые возбуждались под действием стимулов из одних и тех же частей поля сетчатки. При этом клетки, лучше реагировавшие на сигналы от правого глаза, располагались непосредственно над или под клетками, предпочитавшими информацию от левого глаза.
Затем Хьюбел и Визель применили те же методы анализа к нейронам слоя IV первичной зрительной коры (поле 17), куда поступает информация от латерального коленчатого тела. И здесь реакции были сходны с реакциями клеток сетчатки и коленчатого тела. Однако нейроны, расположенные выше и ниже слоя IV, почему-то не реагировали на стимулы, соответствующие небольшим бубликообразным рецептивным полям сетчатки. Зрительные раздражители, состоящие из черных точек на белом фоне или наоборот, вызывали лишь слабую непостоянную реакцию. Чем же объяснялась потеря специфической восприимчивости?
Решить эту загадку случайно помогла реакция одной клетки. Кружки, вызывающие энергичный ответ в слое IV, практически не стимулировали клеток слоя V, но тонкая черная линия, оказавшаяся на краю поля раздражителя, вдруг вызывала быструю ответную реакцию. Почти все клетки коры, расположеннык выше или ниже слоя IV, предпочтительно реагировали на стимулы в форме краев или же светлых и темных линий на контрасном фоне.
После того как была выявлена роль формы, дальнейшие исследования показали, что различные нейроны отдают предпочтение линиям, расположенным под разными углами. Некоторые специали- зированные клетки реагировали только на движущиеся или только на неподвижные линии (т.е. границы между темными и светлыми участками), другие отвечали на движение в определенном направлении. Отдельные кортикальные клетки, расположенные выше или ниже слоя IV, реагировали на линии той или иной длины, а также на характер контраста (светлая линия на темном фоне или наоборот).
«Простые» клетки коры, подобно ганглиозным клеткам (или нейронам коленчатого тела), могут реагировать только на контраст между центром и окружающей областью. Ответная реакция «сложных» клеток избирательна в отношении таких особенностей, как ориентация, форма контура, перемещение и т.д. «Простые» клетки коры почти наверняка активируются сочетанием возбуждающих и тормозящих влияний, исходящих из соответствующих пунктов коленчатого тела. «Сложные» клетки, очевидно, могут извлекать дополнительную информацию о размерах, форме и движении сигналов.
Но как из взаимодействий между всеми этими нейронами раждаются те реальные, «телесные» образы, которые мы видим? Если взглянуть на фотографию в газете через лупу, то обнаружится, что изображение состоит из точек. В темных местах эти точки крупнее и почти сливаются, в светлых – значительно мельче. Когда видны эти детали, невозможно понять, что изображено на картинке. Лишь тогда, когда человек смотрит невооруженным взглядом, точки пропадают и появляется изображение. Упрощенно говоря, ответные реакции ганглиозных клеток сетчатки, активируемых ими клеток в коленчатом теле и «простых» клеток зрительной коры составляют систему распознавания точек мозгом.
Бинокулярное зрение
Общеизвестно, что у человека два глаза, но он почти всегда видит один внешний мир. Эта способность объединять информацию, идущую от обоих глаз, основана на двух важнейших свойствах зрительной системы.
Во-первых, движения наших глаз, когда мы осматриваем оружающее, сложным образом скоординированы. Если вы , глядя на острый край какого-либо предмета, легонько надавите сбоку на глазное яблоко, то в этот момент увидите два изображения, из которых складывается одно. Для слияния изображений особенно важны нейроны верхних бугорков четверохолмия. Эти клетки лучше реагируют на движущиеся раздражители. Они тоже организованы в вертикальные колонки, клетки которых отвечают на сигналы, идущие из одних и тех же участков поля зрения. Оказалось, что клетки, расположенные в нижней части колонки, активируются непосредственно перед тем, как происходит спонтанное движение глаз. Их активность служит пусковым механизмом для глазодвигательных нейронов; последние вызывают сокращение соответствующих мышц, а они перемещают глаз таким образом, чтобы участок поля зрения, где что-то движется, проецировался на центральную ямку. Так, поворачивая вместе оба глаза, мы «обращаем свое внимание» туда, где блеснула вспышка света или что-то передвинулось, чтобы лучше рассмотреть это «что-то».
Клетки, расположенные в глубоких слоях верхних бугорков, получают также слуховую информацию и реагируют на звук. Слуховая информация, объединяющаяся в этих клетках со зрительной, вызывает посылку сигналов на более низкий уровень – клеткам среднего мозга, управляюшим мышцами глазного яблока. С помощью этих мышц человек переводит взгляд туда, где, как сообщает слух, что-то происходит.
Во-вторых, проекции видимого мира на сетчатках обоих глаз отображаются в поле 17 в виде двух почти идентичных проекций, которые затем объединяются межкорковыми связями каким-то еще не вполне понятным образом. Ученым, однако, известно, что по крайней мере на уровне коленчатого тела и поля 17 благодаря довольно сложной системе проводящих путей зрительная информация от каждого глаза остается пространственно обособленной.
У наркотизированных животных клетки слоя IV поля 17 реагируют на импульсы, идущие от обоих глаз. В клетках, расположенных выше и ниже слоя IV, ответные реакции носят более сложный характер. Здесь, как правило, некоторые клетки лучше реагируют на сигналы от одного глаза, чем от другого. Иными словами, влияние одного глаза на такие клетки доминирует над влиянием другого глаза. Действительно, можно последить за ходом нервных путей от определенных участков поля зрения одного глаза через связи в коленчатом теле вплоть до зрительной коры. Здесь эти пути подходят к чередующимся «колонкам глазодоминантности», которые формируются на расстояниях примерно 0,4мм друг от друга и пронизывают всю толщу коры. Если взглянуть сверху на колонки глазодоминантности поля 17, то те из них, которые связаны с одним глазом, сольются в изогнутые гребешки, очень напоминающие кожные узоры на пальцах.
При изучении этих колонок были выявлены удивительные факты, касающиеся формирования коры. Если один глаз будет закрыт от рождения, то нейроны коленчатого тела, с которыми связаны ганглиозные клетки сетчатки этого глаза, и соответствующие им колонки доминантности в коре не смогут нормально развиваться. И хотя сетчатка закрытого глаза полностью сохранит свою чувствительность, ее связи не будут обеспечивать полноценной ответной реакции в коленчатом теле или коре. Колонки доминантности, связанные с закрытым глазом, окажутся более узкими, чем в норме. В то же время влияние глаза, функционирующего с рождения, распространится на значительно большую, чем обычно, область коры. Эти эксперименты показывают, что степень связи между сенсорными нейронами и соответствующими клетками коры может регулироваться уровнем активности сенсорной системы.
Два глаза с удвоенными зрительными путями не просто «уравновешивают» лицо или обеспечивают резерв на случай выхода из строя одного глаза. Они работают сообща для достижения суммарного эффекта. Разница в положении глаз обусловливает незначительные различия в идущей параллельными путями зрительной информации, а это в свою очередь позволяет нам видеть предметы в трех измерениях. Когда эта информация объединяется в зрительных интеграционных центрах коры, человек видит один трехмерный мир.
Деятельность других параллельных путей тоже обогащает наше зрительное восприятие. Различные аспекты информации, получаемой от каждого глаза, передаются по трем параллельным каналам. Информация о специфике образа (распознавание точек) поступает через латеральное коленчатое тело в первичную зрительную кору. Информация, касающаяся движения, по различным аксонам направляется от сетчатки к верзним бугоркам четверохолмия и к полю 17 зрительной коры. Сигналы об уровне рассеянного света идут в супрахиазменные ядра гипоталамуса. Вся эта информация, передаваемая по различным, но параллельным путям, в конце концов вновь объединяется в интегрирующих сетях коры и воссоздает полную картину того, что мы видим.
Полихромное зрение
Основным местом восприятия цвета является центральная ямка сетчатки, в которой находятся только колбочки. Колбочки реагируют на разные цвета: одни чувствительны главным образом к синему цвету, другие – к красному, третьи – к желтому. Хотя тремя основными цветами обычно считают красный, синий и желтый, ганглиозные клетки дают оптимальную реакцию на красный, синий и зеленый цвета.
Анализ пигментов, содержащихся в колбочках, и прямая регистрация активности этих рецепторов в идеальных экспериментальных условиях подкрепляют представление о том, что для восприятия каждого из трех первичных цветов – красного, желтого и синего – существует особый тип колбочек. Дальнейшие исследования показали, что ганглиозные клетки и активируемые ими нейроны латерального коленчатого тела реагируют так, как будто существует не три, а четыре цвета: красный, желтый, синий и зеленый. Но если нет таких колбочек, пигмент которых обусловливал бы специфическую реакцию на зеленый цвет, то как можно объяснить полученные результаты.
Один из ключей к разгадке тайны восприятия зеленого цвета был получен в результате несложных экспериментов. Людей расспрашивали о цветах, которые они видят в определенных условиях. Если смотреть на серое пятно, окруженное ярко-зеленым кольцом, то серый цвет начинает приобретать красноватый оттенок. Если некоторое время фиксировать взглядом ярко-красный предмет, а потом закрыть глаза, то возникнет так называемый последовательный образ этого предмета, окрашенный в зеленый цвет. Этот хроматический эффект последовательного контраста и есть источник так называемого «зеленого свечения», которое можно увидеть, если пристально смотреть на заходящее солнце. Последовательный образ синего предмета окрашен в желтый цвет (это легче увидеть, если синий предмет находится на черном фоне).
Восприятие цвета начинается с того, что специализированные колбочки распознают один из трех первичных цветов. Колбочки связаны с биполярными клетками, а те – с ганглиозными. Решающее значение для восприятия зеленого цвета имеют нейроны локальных сетей сетчатки – горизонтальные клетки.
Одна из теорий, лучше других согласующаяся с экспериментальными данными, носит название теории оппонентных цветов. Она была впервые сформулирована в XIX веке немецким физиологом Эмилем Герингом. По его мнению, некоторые цвета являются антагонистами: желтый и синий, красный и зеленый, черный (отсутствие цвета) и белый (сочетание всех цветов). Эксперименты, проведенные спустя сто лет и основанные на регистрации активности отдельных клеток, дали именно те результаты, которых можно было ожидать, исходя из этой теории.
Ганглиозные клетки, воспринимающие красный цвет в центре рецептивного поля, на его периферии воспринимают зеленый и наоборот. Клетки, реагирующие на желтый цвет в центре, чувствительны к синему на периферии, и наоборот. Колбочки активируются светом определенного цвета. Благодаря взаимодействию с горизонтальными клетками происходит комбинирование различных «цветовых» сигналов при их конвергенции на ганглиозные клетки сетчатки. Вот почему ганглиозные клетки распознают цвета-оппоненты, и зеленый выступает антагонистом красного.
Недавние исследования показали, что цветовая специфичность сигналов от сетчатки сохраняется и в зрительной коре. Клетки, расположенные в верхних слоях зрительной коры, обладают цветоспецифическими рецептивными полями и реагируют на цвета-оппоненты. В то же время они не обнаруживают избирательности по отношению к ориентации линий или краев. На этом основании Дэвид Хьюбел предположил, что система цветовой информации отделена от системы, перерабатывающей ориентационную информацию, но действует параллельно с ней.