Дополнительные органы дыхания рыб

Воздушное дыхание (использование воздуха при помощи плавательного пузыря, кишечника или через специальные добавочные органы
К дополнительным органам дыхания рыб, помогающим переносить неблагоприятные кислородные условия, относят:

Водное кожное дыхание (использование растворённого в воде кислорода при помощи кожи)

Дополнительные приспособления, помогающие переносить неблагоприятные кислородные условия представлены на рис. 21.

Рис. 21. Органы водного и воздушного дыхания у взрослых рыб: 1 - выпячивание ротовой полости; 2 – наджаберный орган; 3, 4, 5 – отделы плавательного пузыря; 6 – участки поглощения кислорода в кишечнике; 7 – выпячивание в желудке; 8 - жабры

Водное кожное дыхание.Дыхание через кожу тела – одна из характерных особенностей водных животных. И хотя у рыб чешуя затрудняет дыхание поверхностью тела, у многих видов роль кожного дыхания очень велика, особенно в неблагоприятных условиях.

По интенсивности кожного дыхания пресноводных рыб делят на три группы табл. 18.

Таблица 18

Интенсивность кожного дыхания пресноводных рыб

Группы рыб по интенсивности кожного дыхания Характеристика групп, примеры рыб
  Рыбы, приспособившиеся жить в условиях сильного дефицита кислорода Это рыбы, населяющие хорошо прогреваемые, с повышенным содержанием органических веществ водоёмы, в которых часто наблюдается недостаток кислорода. У этих рыб доля кожного дыхания в общем дыхании составляет 17…22 %, у отдельных особей – 42…80 %. Это карп, карась, сом, угорь, вьюн. При этом рыбы, у которых кожа имеет наибольшее значение в дыхании, лишены чешуи или она мелкая и не образует сплошного покрова. Например, у вьюна 63 % кислорода поглощается кожей, 37 % - жабрами; при выключении жабр через кожу потребляется до 85 % кислорода, а остальная часть поступает через кишечник.
Рыбы, испытывающие меньший недостаток кислорода и попадающие в неблагоприятные условия реже К ним относятся рыбы, обитающие у дна, но в проточной воде, осетровые – стерлядь, осётр, севрюга. Интенсивность кожного дыхания у них составляет 9…12 %.
Рыбы, не попадающие в условия дефицита кислорода, живущие в проточных или непроточных, но чистых, богатых кислородом водах Интенсивность кожного дыхания не превышает 3,3…9 %. Это сиги, корюшка, окунь, ёрш.

Через кожу рыб происходит также выделение углекислоты. Так, у вьюна этим путём выделяется до 92 % общего количества.

Воздушное дыхание. У некоторых рыб, живущих в неблагоприятных условиях, выработались приспособления для дыхания кислородом воздуха табл. 19.

Таблица 19

Дополнительные приспособления для воздушного дыхания

Виды приспособлений у рыб для дыхания кислородом воздуха Характеристика приспособлений, примеры рыб
Дыхание при помощи кишечника В стенках кишечника образуются скопления капилляров. Воздух, заглатываемый ртом, проходит через кишечник, и в этих местах кровь поглощает кислород и выделяет двуокись углерода, при этом из воздуха поглощается до 50 % кислорода. Такой тип дыхания свойственен вьюнам, некоторым сомовым, карповым рыбам. Например, у вьюна в условиях большого недостатка кислорода именно этот способ дыхания становится почти равным жаберному. При заморах рыбы заглатывают ртом воздух; воздух аэрирует находящуюся в ротовой полости воду, которая проходит затем через жабры.
  Дыхание при помощи специальных добавочных органов: лабиринтового (у лабиринтовых рыб), наджаберного (у змееголова и др.) Лабиринтовые рыбы имеют лабиринт – расширенный карманообразный участок жаберной полости, складчатые стенки которого пронизаны густой сетью капилляров, в которых происходит газообмен. Таким способом рыбы дышат кислородом атмосферы и могут находиться вне воды в течение нескольких дней (тропический окунь-ползун Anabas sp. Выходит из воды и лазит по камням и деревьям) (рис. 22). У наджаберных рыб (тропические илистые прыгуны Periophthalmus sp.) жабры окружены губкообразной тканью, пропитанной водой. При выходе этих рыб на сушу жаберные крышки плотно закрываются и предохраняют жабры от высыхания. У змееголова выпячивание глотки образует наджаберную полость, слизистая оболочка её стенок снабжена густой сетью капилляров. Благодаря наличию наджаберного органа он дышит воздухом и может находиться на мелководье при t 30ºС. Для нормальной жизнедеятельности змееголову, как и ползуну, нужен и растворённый в воде кислород, и атмосферный. Однако во время зимовки в прудах, покрытых льдом, он атмосферным воздухом не пользуется.
Дыхание при помощи плавательного пузыря В неблагоприятных кислородных условиях воздух плавательного пузыря у многих рыб используется для дыхания (вьюн, угорь, карп, сазан). Наибольшего развития как орган дыхания плавательный пузырь достигает у двоякодышащих рыб. У них он ячеистый и функционирует как лёгкое. При этом возникает «лёгочный круг» кровообращения. Подвижные и хищные рыбы имеют большой запас кислорода в плавательном пузыре, который расходуется организмом при бросках за добычей, когда поступление кислорода через органы дыхания оказывается недостаточным.


Рис. 22. Наджаберные органы дыхания: а – анабиса; б – змееголова

Осваивая различные водоёмы, рыбы приспособились к жизни при разных газовых режимах табл. 20.

Таблица 20

Влияние разных газовых режимов на жизнедеятельность рыб

Газовые режимы   Характеристика газовых режимов, примеры рыб
Содержание в воде кислорода   Наиболее требовательны к содержанию кислорода в воде лососевые, которым для нормальной жизнедеятельности нужна концентрация кислорода 4,4…7 мг/л; хариус, голавль, налим хорошо себя чувствуют при содержании не менее 3,1 мг/л; карповым обычно достаточно 1,9…2,5 мг/л.
Кислородный порог Кислородный порог – это минимальная концентрация кислорода, при которой рыба гибнет. Форель начинает задыхаться при концентрации кислорода 1,9 мг/л, судак и лещ погибают при 1,2, плотва и краснопёрка – при 0,25…0,3 мг/л; у сеголетков-карпов, выращенных на естественной пище, кислородный порог отмечен при 0,07…0,25 мг/л, а для двухлетков – 0,01…0,03 мг/л кислорода. Караси и ротаны – частичные анаэробы – несколько суток могут жить совсем без кислорода, но при низкой температуре. Предполагают, что сначала организм использует кислород из плавательного пузыря, затем – гликоген печени и мышц. По-видимому, рыбы имеют специальные рецепторы в передней части спинной аорты или в продолговатом мозгу, воспринимающие падение концентрации кислорода в кровяной плазме. Выносливости рыб способствует большое количество каротиноидов в нервных клетках мозга, которые способны накапливать кислород и отдавать его при недостатке.
Перенасыщение воды ислородом Летальной границей для эмбрионов щуки является 400 % насыщения воды кислородом, при 350…430 % насыщения нарушается двигательная активность эмбрионов плотвы. Прирост осетровых снижается при 430 % насыщения. Инкубация икры в перенасыщенной кислородом воде приводит к замедлению развития эмбрионов, сильному увеличению отхода и количества уродов и даже гибели. У рыб появляются пузырьки на жабрах, под кожей, в кровеносных сосудах, органах, а затем наступают судороги и смерть. Это называется газовая эмболия или газопузырьковая болезнь. К небольшому пересыщению кислорода рыбы адаптируются быстро. У них повышается обмен и как результат увеличивается потребление корма и снижается кормовой коэффициент, развитие эмбрионов ускоряется, отходы снижаются. Однако гибель наступает не из-за избытка кислорода, а из-за большого количества азота. Например, у лососевых личинки и мальки гибнут при 103…104 %, сеголетки – 105…113, взрослые рыбы – при 118 % насыщения воды азотом.
Интенсивность дыхания рыб Интенсивность дыхания рыб зависит от биотических и абиотических факторов. Внутри одного вида она изменяется в зависимости от размера, возраста, подвижности, активности питания, пола, степени зрелости гонад, физико-химических факторов среды. По мере роста рыб активность окислительных процессов в тканях уменьшается; созревание гонад, наоборот, вызывает увеличение потребления кислорода. Расход кислорода в организме самцов выше, чем у самок.
Ритм дыхания На ритм дыхания кроме концентрации в воде кислорода влияют содержание СО2, рН, температура и др. (например, при температуре 10ºС и содержании кислорода 4,7 мг/л форель совершает 60…70 дыхательных движений в минуту, а при 1,2 мг/л частота дыхания возрастает до 140…160; карп при 10ºС дышит почти вдвое медленнее, чем форель (30…40 раз в минуту), зимой он совершает в минуту 3…4 и даже 1…2 дыхательных движения.
  Содержание в воде СО2 Для нормального дыхания рыб очень важно содержание в воде СО2. При большом количестве двуокиси углерода дыхание рыб затруднено, так как уменьшается способность гемоглобина крови связывать кислород, насыщение кислородом крови резко снижается и рыба задыхается. При содержании СО2 в атмосфере 1…5 % СО2 крови не может поступать наружу, а кровь не может принимать кислород даже из насыщенной кислородом воды.

Кровеносная система рыб

Цель занятия:изучить кровеносную систему рыб.

Материалы: плакаты, таблицы.

Морфологическая и биохимическая характеристика крови различна у разных видов рыб в связи с систематическим положением, особенностями среды обитания и образа жизни. Внутри одного вида эти показатели колеблются в зависимости от сезона года, условий содержания, возраста, пола, состояния особей.

Морфологическая и биохимическая характеристика крови разных видов рыб представлена в табл. 21.

Таблица 21

Морфологическая и биохимическая характеристика крови разных видов рыб

Элементы, количество и функции крови Характеристика крови разных видов рыб
Количество крови Количество крови у рыб меньше, чем у всех остальных позвоночных животных (1,1…7,3 % массы тела, в том числе у карпа 2,0…4,7 %, сома – до 5, щуки – 2, кеты – 1,6, тогда как у млекопитающих – 6,8 % в среднем). Это связано с горизонтальным положением тела (нет необходимости проталкивать кровь вверх) и меньшими энергетическими тратами в связи с жизнью в водной среде.
Эритроциты рыб Эритроциты рыб крупнее, а их количество в крови меньше, чем у высших позвоночных. В 1мм3 крови количество эритроцитов составляет (млн): у приматов – 9,27; копытных – 11,36; китообразных – 5,43; птиц – 1,61…3,02; костистых рыб – 1,71 (пресноводные), 2,26 (морские), 1, 49 (проходные). Количество эритроцитов у рыб колеблется в широких пределах, прежде всего в зависимости от их подвижности: у карпа – 0,84…1,89 млн/мм3 крови, щуки – 2,08, пеламиды – 4,12 млн/мм3.
Лейкоциты рыб В крови рыб лейкоцитов больше, чем эритроцитов, это связано, с одной стороны, с пониженным обменом рыб, а с другой – с необходимостью усилить защитные функции крови, так как окружающая среда изобилует болезнетворными организмами. Лейкоциты рыб отличаются большим разнообразием. У большинства видов в крови имеются и зернистые (нейтрофилы, эозинофилы), и незернистые (лимфоциты, моноциты) формы лейкоцитов. Преобладают лимфоциты, на долю которых приходиться 80…95 %, моноциты составляют 0,5…11 %, нейтрофилы – 13…31 %. Эозинофилы встречаются редко (встречаются у карповых, амурских растительноядных и некоторых окунёвых рыб). Соотношение разных форм лейкоцитов в крови (на примере карпа) зависит от возраста и условий выращивания; количество лейкоцитов сильно изменяется в течение года: повышается летом и понижается зимой при голодании в связи со снижением интенсивности обмена.
Тромбоциты рыб Для тромбоцитов, участвующих в свёртывании крови, также характерно разнообразие форм, размеров и количества.
Гемоглобин Кровь рыб окрашена гемоглобином в красный цвет, но есть рыбы и с бесцветной кровью (например, представители семейства Chaenichthyidae из подотряда нототениевых). У нототениевых, тресковых и других обитателей полярных широт в крови образуются вещества (антифризы), благодаря которым они не замерзают при отрицательной температуре. Количество гемоглобина в организме рыб значительно меньше, чем у наземных позвоночных: на 1 кг тела у них приходится 0,5…4 г, тогда как у млекопитающих он составляет 5…25 г. У рыб, передвигающихся быстро, гемоглобина больше, чем у малоподвижных: у проходного осётра 4 г/кг, у налима 0,5 г/кг. Количество гемоглобина зависит от сезона (например, у карпа повышается зимой и понижается летом), гидрохимического режима водоёма (например, в воде с рН 5,2 количество гемоглобина в крови возрастает), условий питания (например, карпы, выращенные на естественной пище и дополнительных кормах, имеют разное количество гемоглобина). Темп роста рыб зависит от количества гемоглобина. Способность гемоглобина извлекать кислород из воды у разных рыб неодинакова. У быстроплавающих (макрели, трески, форели) гемоглобина в крови много, и они очень требовательны к содержанию кислорода в воде. У многих морских придонных рыб, а также угря, карпа, карасей и некоторых других, наоборот, гемоглобина в крови мало, но он может забирать кислород из среды даже с незначительным количеством. Например, судаку для насыщения крови кислородом (при 16ºС) необходимо содержание в воде 2,1…2,3 О2 мг/л; при наличии в воде 0,56…0,6 О2 мг/л кровь начинает его отдавать, дыхание оказывается невозможным, и рыба гибнет. Лещу при этой же температуре для полного насыщения гемоглобина кислородом достаточно присутствие в литре воды 1,0…1,06 мг кислорода. Чувствительность рыб к изменениям температуры воды также связана со свойствами гемоглобина: пи повышении температуры потребность организма в кислороде увеличивается, но способность гемоглобина его забирать – уменьшается. Уменьшает способность гемоглобина забирать кислород и углекислота: для того чтобы насыщенность крови угря кислородом достигла 50 % при содержании в воде 1 % СО2, необходимо давление кислорода в 666,6 Па, а в отсутствие СО2 для этого достаточно давления кислорода почти вдвое меньшего – 266,6…399,9 Па.
Костный мозг и лимфатические узлы Костного мозга, являющегося основным органом образования форменных элементов крови у высших позвоночных, и лимфатических желёз (узлов) у рыб нет.
Кровяное давление (Па) Кровяное давление у рыб низкое – 2133,1 (скат), 11198,8 (щука), 15998,4 (лосось), тогда как в сонной артерии лошади – 20664,6.
Группы крови рыб Впервые группы крови у рыб были определены на байкальском омуле и хариусе в 30-х годах прошлого столетия. К настоящему времени установлено, что групповая антигенная дифференцировка эритроцитов широко распространена: выявлено 14 систем групп крови, включающих более 40 эритроцитарных антигенов. При помощи иммуносерологических методов изучают изменчивость на разных уровнях: выявлены различия между видами и подвидами и даже между внутривидовыми группировками у лососевых (при изучении родства форелей), осетровых (при сравнении локальных стад) и других рыб.
Функции крови Переносит белки, углеводы (гликоген, глюкоза и др.) и другие питательные вещества, играющие большую роль в энергетическом и пластическом обмене; дыхательную – транспортировка кислорода к тканям и углекислоты к органам дыхания; выделительную – вынос конечных продуктов обмена к органам выделения; регуляторную – перенос гормонов и других активных веществ от желёз внутренней секреции к органам и тканям; защитную – в крови содержаться противомикробные вещества (лизоцим, комплемент, интерферон, пропердин), образуются антитела, циркулирующие в ней лейкоциты обладают фагоцитарной способностью. Уровень этих веществ в крови зависит от биологических особенностей рыб и абиотических факторов, а подвижность состава крови позволяет использовать её показатели для оценки физиологического состояния.

Главным отличием кровеносной системы рыб от других позвоночных является наличие двухкамерного сердца (наполненного венозной кровью (за исключением двоякодышащих и кистепёрых)) и одного круга кровообращения.

На рис. 23. представлена схема кровеносной системы костистой рыбы.

Рис. 23. Схема кровеносной системы костистой рыбы:

1 – венозная пазуха; 2 – предсердие; 3 – желудочек; 4 – луковица аорты; 5 – брюшная аорта; 6 - приносящие жаберные артерии; 7 – выносящие жаберные артерии; 8 – корни спинной аорты; 9 – передняя перемычка, соединяющая корни аорты; 10 – сонная артерия; 11 – спинная аорта; 12 – подключичная артерия; 13 - кишечная артерия; 14 – брыжеечная артерия; 15 – хвостовая артерия; 16 – хвостовая вена; 17 – воротные вены почек; 18 – задняя кардинальная вена; 19 – передняя кардинальная вена; 20 – подключичная вена; 21 – Кювьеров проток; 22 – воротная вена печени; 23 – печень; 24 – печёночная вена; чёрным показаны сосуды с венозной кровью, белым – с артериальной

Сердце рыб состоит из одного желудочка и одного предсердия и помещается в околосердечной сумке, сразу за головой, позади последних жаберных дуг, то есть по сравнению с другими позвоночными сдвинуто вперёд. Перед предсердием имеется венозная пазуха, или венозный синус, со спадающими стенками; через эту пазуху кровь поступает в предсердие, а из него – в желудочек.

Сердце рыб Сердце рыб гораздо меньше и слабее, чем сердце наземных позвоночных. Масса его обычно не превышает 2,5 %, в среднем 1 % массы тела, тогда как у млекопитающих оно достигает 4,6 %, а у птиц даже 16 %. Невелика и частота сокращений сердца – 18…30 ударов в минуту, причём она сильно зависит от температуры: при низкой температуре у рыб, зимующих на ямах, она уменьшается до 1…2; у рыб, переносящих вмерзание в лёд, пульсация сердца на этот период прекращается.

Расширенный начальный участок брюшной аорты у низших рыб (акулы, скаты, осетровые, двоякодышащие) образует сокращающийся артериальный конус. А у высших рыб – луковицу аорты, стенки которой сокращаться не могут. Обратному току крови препятствуют клапаны.

Схема кровообращения в самом общем виде представлена следующим образом. Венозная кровь, заполняющая сердце, при сокращениях сильного мускульного желудочка через артериальную луковицу по брюшной аорте направляется вперёд и поднимается в жабры по приносящим жаберным артериям. У костистых рыб их четыре с каждой стороны головы – по числу жаберных дуг. В жаберных лепестках кровь проходит через капилляры и окисленная, обогащённая кислородом направляется по выносящим сосудам (их также четыре пары) в корни спинной аорты, которые затем сливаются в спинную аорту, идущую вдоль тела назад, под позвоночником. Соединение корней аорты спереди образует характерный для костистых рыб головной круг. Вперёд от корней аорты ответвляются сонные артерии.

От спинной аорты идут артерии к внутренним органам и мускулатуре. В хвостовом отделе аорта переходит в хвостовую артерию. Во всех органах и тканях артерии распадаются на капилляры. Собирающие венозную кровь венозные капилляры впадают в вену, несущие кровь к сердцу. Хвостовая вена, начинающаяся в хвостовом отделе, войдя в полость тела, разделяется на воротные вены почек. В почках разветвления воротных вен образуют воротную систему, а выйдя из них, сливаются в парные задние кардинальные вены. В результате слияния вен задних кардинальных с передними кардинальными (ярёмными), собирающими кровь из головы, и подключичными, приносящими кровь из грудных плавников, образуются два Кювьерова протока, по которым кровь попадает в венозный синус. Кровь из пищеварительного тракта (желудка, кишечника) и селезёнки, идущая по нескольким венам, собирается в воротную вену печени, разветвления которой в печени образуют воротную систему. Собирающая кровь из печени печёночная вена впадает прямо в венозный синус.

Кроветворение рыб по сравнению с высшими позвоночными отличается рядом особенностей табл. 22.

Таблица 22

Особенности кроветворения рыб

№ п/п Характеристика особенностей, примеры рыб
Образование клеток крови происходит во многих органах. Очагами кроветворения являются: жаберный аппарат (эндотелий сосудов и ретикулярный синцитий, сосредоточенный у основания жаберных лепестков), кишечник (слизистая), сердце (эпителиальный слой и эндотелий сосудов), почки (ретикулярный синцитий между канальцами), селезёнка, сосудистая кровь, лимфоидный орган (скопления кроветворной ткани – ретикулярного синцития – под крышей черепа). На отпечатках этих органов видны кровяные клетки разных стадий развития.
У костистых рыб наиболее активно гемопоэз происходит в лимфоидных органах, почке и селезёнке, причём главным органом кроветворения являются почки, а именно их передняя часть. В почках и селезёнке происходит как образование эритроцитов, лейкоцитов, тромбоцитов, так и распад эритроцитов.
Наличие в периферической крови рыб и зрелых и молодых эритроцитов является нормальным и не служит патологическим показателем в отличие от крови взрослых млекопитающих.
В эритроцитах имеется ядро, как и у других водных животных, вследствие чего жизнеспособность их дольше (больше года), чем млекопитающих.

Селезёнка рыб располагается в передней части полости тела. Между петлями кишечника, но независимо от него. Это плотное компактное тёмно-красное образование различной формы (шарообразной, лентовидной), но чаще вытянутой.

Селезёнка быстро меняет объём под влиянием внешних условий и состояния рыбы. У карпа она увеличивается зимой, когда в связи с пониженным обменом веществ ток крови замедляется и она скапливается в селезёнке, печени и почках, которые служат депо крови, то же наблюдается при острых заболеваниях. При недостатке кислорода, загрязнении воды, перевозке и сортировке рыбы, облове прудов запасы из селезёнки поступают в кровеносное русло.

Лимфатическая система рыб не имеет желёз. Она представлена рядом парных и непарных лимфатических стволов, в которые лимфа собирается из органов и по ним же выводится в конечные участки вен, в частности в Кювьеровы протоки. У некоторых рыб есть лимфатические сердца.

Кровеносная система рыбподчиняется нервной (блуждающий нерв) и гуморальной (гормоны, ионы Са, К) регуляции. Центральная нервная система рыб получает информацию о работе сердца от барорецепторов жаберных сосудов.

Наши рекомендации