Детонационный синтез и электровзрыв

Наночастицы алмаза можно получать детонационным синтезом. В способе используется энергия взрыва, при этом достигается давление в сотни тысяч атмосфер и температуры до нескольких тысяч градусов. Эти условия соответствуют области термодинамической устойчивости фазы алмаза. Слой исходного вещества (высокопористая металлическая среда, химическое соединение, соль или гель гидрооксида металла) подвергается ударно-волновому воздействию от контактного заряда взрывчатого вещества.

В ударной волне происходит сжатие и прогрев высокопористого металла или же протекают реакции разложения исходного соединения до оксида с последующей стабилизацией оксидных фаз.

После выхода ударной волны на свободную поверхность исходного вещества материал разлетается в газовую атмосферу взрывной камеры.

В настоящее время наиболее широко детонационный синтез применяют для промышленного получения алмазных порошков различного технического назначения. Также получают нанопорошки оксидов Аl, Мg, Тi, Zr. Если в качестве исходного вещества используются металлы, то применяется активная кислородсодержащая среда (например, О2 + N2). В этом случае на стадии разлета происходит горение металла с образованием ультрадисперсного оксида.

При использовании углеродсодержащей атмосферы СО2 удается синтезировать нанотрубки и сферические частицы углерода, а также нитевидные кристаллы МgO.

Физические методы.

К физическим методам получения УДматериалов относятся методы распыления, процессы испарения–конденсации, вакуум–сублимационная технология, методы превращений в твёрдом состоянии.

Метод распыления струи расплава жидкостью или газом заключается в том, что тонкая струя жидкого материала подается в камеру, где разбивается в мелкие капли потоком сжатого инертного газа или струей жидкости. В качестве газов в этом методе используют аргон или азот; в качестве жидкостей – воду, спирты, ацетон, ацетальдегид.

Формирование наноструктур возможно способом закалки из жидкого состояния или спиннингованием. Способ состоит в получении тонких лент с помощью быстрого (не менее 106 К/с) охлаждения расплава на поверхности вращающегося диска или барабана.

Методы испарения–конденсацииоснованы на получении порошков в результате фазового перехода пар – твёрдое тело или пар – жидкость – твёрдое тело в газовом объёме либо на охлаждаемой поверхности. Сущность метода состоит в том, что исходное вещество испаряется путём интенсивного нагрева, а затем резко охлаждается. Нагрев испаряемого материала может осуществляться различными способами: резистивным, лазерным, плазменным, электрической дугой, индукционным, ионным. Процесс испарения–конденсации можно проводить в вакууме или среде нейтрального газа.

Электрический взрыв проводников проводят в аргоне или гелии при давлении 0,1 – 60 МПа. В этом методе тонкие проволочки металла диаметром 0,1 – 1 мм помещают в камеру и импульсно подают к ним ток большой силы. Продолжительность импульса 10–5 – 10–7 с, плотность тока 106 А/мм2. При этом проволочки мгновенно разогреваются и взрываются. Образование частиц идет в свободном полёте.

Вакуум–сублимационная технология получения НМ включает три основные стадии. На первой стадии готовится исходный раствор обрабатываемого вещества или нескольких веществ. Вторая стадия – замораживания раствора – имеет целью зафиксировать равномерное пространственное распределение компонентов, присущее жидкости для получения минимально возможного размера кристаллитов в твёрдой фазе. Третья стадия – удаление из замороженного раствора кристаллитов растворителя путём его возгонки.

Существует ряд методов получения НМ, в которых диспергирование осуществляется в твёрдом веществе без изменения агрегатного состояния.

Одним из способов получения массивных НМ является способ контролируемой кристаллизации из аморфного состояния. Метод предполагает получение аморфного материала закалкой из жидкого состояния, а затем в условиях контролируемого нагрева проводится кристаллизация вещества.

В настоящее время наиболее распространенным методом получения углеродных нанотрубок является метод термического распыления графитовых электродов в плазме дугового разряда. Процесс синтеза осуществляется в камере, заполненной гелием под высоким давлением. При горении плазмы происходит интенсивное термическое испарение анода, при этом на торцевой поверхности катода образуется осадок, в котором формируются нанотрубки углерода. Образующиеся многочисленные нанотрубки имеют длину порядка 40 мкм. Они нарастают на катоде перпендикулярно плоской поверхности его торца и собраны в цилиндрические пучки диаметром около 50 мкм. Пучки нанотрубок регулярно покрывают поверхность катода, образуя сотовую структуру. Ее можно обнаружить, рассматривая осадок на катоде невооруженным глазом. Пространство между пучками нанотрубок заполнено смесью неупорядоченных наночастиц и одиночных нанотрубок. Содержание нанотрубок в углеродном осадке (депозите) может приближаться к 60%.



Наши рекомендации