Обмен железа: источники железа в организме, всасывание, транспорт в крови, депонирование.
В гемсодержащих белках железо находится в составе гема. В негемовых железосодержащих белках железо непосредственно связывается с белком. К таким белкам относят трансферрин, ферритин, окислительные ферменты ксантиноксидазу, железофлавопротеины NADH-дегидрогеназа и сукцинат-дегидрогеназа.
В организме взрослого человека содержится 3 - 4 г железа, из которых только около 3,5 мг находится в плазме крови. Источниками железа при биосинтезе железосодержащих белков служат железо пищи и железо, освобождающееся при постоянном распаде эритроцитов в клетках печени и селезёнки.
В нейтральной или щелочной среде железо находится в окисленном состоянии - Fe3+, При низких значениях рН железо восстанавливается и легко диссоциирует. Процесс восстановления и окисления железа обеспечивает его перераспределение между макромолекулами в организме. Ионы железа обладают высоким сродством ко многим соединениям поэтому транспорт и депонирование железа в организме осуществляют особые белки. В клетках железо депонирует белок ферритин, в крови его транспортирует белок трансферрин.
НАРУШЕНИЕ ОБМЕНА ЖЕЛЕЗА: ЖЕЛЕЗОДЕФИЦИТНАЯ АНЕМИЯ, ГЕМОХРОМАТОЗ, ТОКСИЧНОСТЬ ЖЕЛЕЗА.
Железодефицитная анемия может наблюдаться при повторяющихся кровотечениях, беременности, частых родах, язвах и опухолях ЖКТ, после операций на ЖКТ. При железодефицитной анемии уменьшается размер эритроцитов и их пигментация (гипохромные эритроциты малых размеров). В эритроцитах уменьшается содержание гемоглобина, понижается насыщение железом трансферрина, а в тканях и плазме крови снижается концентрация ферритина. Причина этих изменений - недостаток железа в организме, вследствие чего снижается синтез гема и ферритина в неэритроидных тканях и гемоглобина в эритроидных клетках. Гемохроматоз. Когда количество железа в клетках превышает объём ферритинового депо, железо откладывается в белковой части молекулы ферритина. В результате образования таких аморфных тложений избыточного железа ферритии превращается в гемосидерин. Гемосидерин плохо растворим в воде и содержит до 37% железа Накопление гранул гемосидерина в печени, поджелудочной железе, селезёнке и печени приводит к повреждению этих органов - гемохроматозу. Гемохроматоз может быть обусловлен наследственным увеличением всасывания железа в кишечнике, при этом содержание железа в организме больных может достигать 100 г. Это заболевание наследуется по аутосомнорецессивному типу, а. Накопленш гемосидерина в поджелудочной железе приводит к разрушению р-клеток островков Лангерханса и, как следствие этого, к сахарному диабету. Отложение гемосидерина в гепатоцитах вызывает цирроз печени, а в миокардиоцитах - сердечную недостаточность. Больных наследственным гемохроматозом лечат регулярными кровопусканиями, еженедельно или один раз в месяц в зависимости от тяжести состояния больного. К гемохроматозу могут привести частые переливания крови, в этих случаях больных лечат препаратами, связывающими железо.
МЕТОДЫ ОБНАРУЖЕНИЯ ГЕМА ГЕМОГЛОБИНА: ФИЗИЧЕСКИЙ (СПЕКТРАЛЬНЫЙ АНАЛИЗ ГЕМОГЛОБИНА И ЕГО ПРОИЗВОДНЫХ); ФИЗИКО-ХИМИЧЕСКИЙ (ПОЛУЧЕНИЕ КРИСТАЛЛОВ СОЛЯНОКИСЛОГО ГЕМИНА).
Спектральный анализ гемоглобина и его производных. Использование спектрографических методов при рассмотрении раствора оксигемоглобина выявляет в желто—зеленой части спектра между фраунгоферовскими линиями D и Е две системные полосы поглощения, у восстановленного гемоглобина в той же части спектра имеется лишь одна широкая полоса. Различия в поглощении излучения гемоглобином и оксигемоглобином послужили основой для метода изучения степени насыщения крови кислородом — оксигемометрии.
Карбгемоглобин по своему спектру близок к оксигемоглобину, однако при добавлении восстанавливающего вещества у карбгемоглобина появляются две полосы поглощения. Спектр метгемоглобина характеризуется одной узкой полосой поглощения слева на границе красной и желтой части спектра, второй узкой полосой на границе желтой и зеленой зон, наконец, третьей широкой полосой в зеленой части спектра
Кристаллы гемина или солянокислого гема-тина. С поверхности пятна соскабливается на предметное стекло и измельчается несколько крупинок. К ним добавляются 1—2 крупинки поваренной соли и 2—3 капли ледяной уксус- ной к-ты. Все накрывают покровным стеклом и осторожно, не доводя до кипения, нагревают. Присутствие крови доказывается появлением микрокристаллов буро-желтого цвета в виде ромбических табличек. Если кристаллы плохо сформированы, то имеют вид конопляного семени. Получение кристаллов гемина безусловно доказывает присутствие в исследуемом объекте крови. Отрицательный результат пробы не имеет значения. Примесь жира,ржавчина затрудняют получение кристаллов гемина
АКТИВНЫЕ ФОРМЫ КИСЛОРОДА: СУПЕРОКСИД АНИОН, ПЕРОКСИД ВОДОРОДА, ГИДРОКСИЛЬНЫЙ РАДИКАЛ, ПЕРОКСИНИТРИТ. ИХ ОБРАЗОВАНИЕ, ПРИЧИНЫ ТОКСИЧНОСТИ. ФИЗИОЛОГИЧЕСКАЯ РОЛЬ АФК.
В ЦПЭ поглощается около 90% поступающего в клетки О2. Остальная часть О2 используется в других ОВР. Ферменты, участвующие ОВР с использованием О2, делятся на 2 группы: оксидазы и оксигеназы.
Оксидазы используют молекулярный кислород только в качестве акцептора электронов, восстанавливая его до Н2О или Н2О2.
Оксигеназы включают один (монооксигеназы) или два (диоксигеназы) атома кислорода в образующийся продукт реакции.
Хотя эти реакции не сопровождаются синтезом АТФ, они необходимы для многих специфических реакций в обмене аминокислот), синтезе жёлчных кислот и стероидов), в реакциях обезвреживания чужеродных веществ в печени
В большинстве реакций с участием молекулярного кислорода его восстановление происходит поэтапно с переносом одного электрона на каждом этапе. При одноэлектронном переносе происходит образование промежуточных высокореактивных форм кислорода.
В невозбуждённом состоянии кислород нетоксичен. Образование токсических форм кислорода связано с особенностями его молекулярной структуры. О2 содержит 2 неспаренных электрона, которые располагаются на разных орбиталях. Каждая из этих орбиталей может принять ещё один электрон.
Полное восстановление О2 происходит в результате 4 одноэлектронных переходов:
Супероксид, пероксид и гидроксильный радикал - активные окислители, что представляет серьёзную опасность для многих структурных компонентов клетки
Активные формы кислорода могут отщеплять электроны от многих соединений, превращая их в новые свободные радикалы, инициируя цепные окислительные реакции
Повреждающее действие свободных радикалов на компоненты клетки. 1 - разрушение белков; 2 - повреждение ЭР; 3 - разрушение ядерной мембраны и повреждение ДНК; 4 - разрушение мембран митохондрий; проникновение в клетку воды и ионов.
Образование супероксида в ЦПЭ. "Утечка" электронов в ЦПЭ может происходить при переносе электронов с участием коэнзима Q. При восстановлении убихинон превращается в анион-радикал семихинона. Этот радикал нефермента-тивно взаимодействует с О2 с образованием супероксидного радикала.
Большая часть активных форм кислорода образуется при переносе электронов в ЦПЭ, прежде всего, при функционировании QH2-дегидрогеназного комплекса. Это происходит в результате неферментативного переноса ("утечки") электронов с QH2 на кислород (
на этапе переноса электронов при участии цитохромоксидазы (комплекс IV) "утечка" электронов не происходит благодаря наличию в ферменте специальных активных центров, содержащих Fe и Сu и восстанавливающих О2 без освобождения промежуточных свободных радикалов.
В фагоцитирующих лейкоцитах в процессе фагоцитоза усиливаются поглощение кислорода и образование активных радикалов. Активные формы кислорода образуются в результате активации NADPH-оксидазы, преимущественно локализованной на наружной стороне плазматической мембраны, инициируя так называемый "респираторный взрыв" с образованием активных форм кислорода
Защита организма от токсического действия активных форм кислорода связана с наличием во всех клетках высокоспецифичных ферментов: супероксиддисмутазы, каталазы, глутатион-пероксидазы, а также с действием антиоксидантов .