Отражательная способность витринита и степень катагенеза ОВ
Измерение отражательной способности витринита Ro% относится к наиболее распространённым методом оценки степени созревания ОВ в осадках. Отражательная способность витринита измеряется как отношение интенсивностей отражённого и падающего пучков света. Согласно физическим законам отражения и преломления света,
доля интенсивности, Rо, луча монохроматического света, который нормально отражается от плоской поверхности куска витринита с показателем преломления n, погружённого в масло с показателем преломления, no (или в воздух с показателем nа ), равна:
Показатели преломления n и no, определяются интегральной температурной историей образца витринита, т.е. функцией T(t). Основу метода составляет представление о том, что в процессе углефикации витринит меняет свою отражательную способность от значений Ro = 0.25% на стадии торфа до Ro=4.0% на стадии антрацита (Лопатин, Емец, 1987). Огромный фактический материал, накопленный к настоящему времени, дает возможность идентифицировать те или иные стадии созревания по измеренным значениям Ro%. При этом возможны вариации в значенияx Ro% для ОВ разного типа, а также в зависимости от содержания примесей в ОВ. Так, Ro = 0.50 % приблизительно соответствует началу главной стадии образования нефти для высокосернистыx керогенов, тогда как Ro = 0.55 - 0.60% - той же стадии для керогенов типа I и II (см. ниже), а Ro = 0.65 - 0.70% - для керогенов типа III (Gibbons et al., 1983; Waples 1985). Один из вариантов предполагаемого соответствия значений Ro% основным стадиям созревания ОВ и вычисляемым значениям температурно-временного индекса (ТВИ), обсуждаемого ниже, можно увидеть в табл.1-7а, а также на рис. 1-7. Соответствие стадий катагенеза значениям Ro, приведенное в таблице, основано на корреляционной связи вычисленных Температурно-Временных Индексов (ТВИ) и значений Ro%, измеренных в разных бассейнах мира, и является приближённым. Тем не менее, оно широко используется в литературе и обсуждается подробнее в разделе 7-5-1. Для удобства ориентации в различных шкалах катагенеза ОВ в табл.1-7б приводится также шкала соответствия значений
Табл.1—7а. Соответствие значений Ro% и ТВИ стадиям катагенеза ОВ (Waples,1985)
Стадии Катагенеза | Начало генерации жидких УВ | 50% созревания керогена | Пик генерации жидких УВ | Конец генерации жидких УВ | Конденсат | Начало генерации сухого газа |
Ro % | 0.50-0.65 | 0.80 | 0.90-1.00 | 1.30 | 1.75 | 2.00-2.30 |
ТВИ | 3-15 | 50-75 | 900-1600 |
отражательной способности витринита %Ro стадиям зрелости ОВ, принятым в российской нефтяной геологии.
Табл.1—7б. Соответствие значений Ro% стадиям катагенеза ОВ, принятым в российской нефтяной геологии (Парпарова и др., 1981)
Диагенез : ДГ3, ДГ2 и ДГ1 ------ Ro < 0.25%
Протокатагенез : ПК1 (0.25 £ Ro £ 0.30%)
ПК2 ((0. 30 £ Ro £ 0.42%)
ПК2 ((0.42 £ Ro £ 0.53%)
Мезокатагенез : МК1 (0.53 £ Ro £ 0.65%)
МК2 ((0. 65 £ Ro £ 0.85%)
МК3 ((0.85 £ Ro £ 1.15%)
МК4 ((1. 15 £ Ro £ 1.55%)
МК5 ((1.55 £ Ro £ 2.05%)
Апокатагенез : АК1 (2.05 £ Ro £ 2.50%)
АК2 ((2. 50 £ Ro £ 3.50%)
АК3 ((3.50 £ Ro £ 5.00%)
АК4 ((Ro > 5.00%)
Коротко скажем о некоторых проблемах, связанных с использованием измерений %Ro для оценки степени катагенеза ОВ. Они связаны прежде всего со сложностью выделения витринитовыx мацералов из ОВ осадочныx пород из-за иx большого разнообразия. Использование отражательной способности витринита для контроля палеотемпературных условий возможно, вообще говоря, лишь на основе витринита из угольных пластов и с меньшей надёжностью витринита из континентального (“terrestrial”) материнского ОВ в глинах с содержанием органического углерода, не превосходящим 0.5% . Но и в этих континентальных (terrestrial) сериях следует соблюдать осторожность, так как в таких породах как песчаники основная часть ОВ может быть переработана и изменена (Durand et al.1986). Необходимо учитывать также и тот факт, что в любом случае для Ro > 2% отражательная способность будет зависеть ещё и от давления. Следует соблюдать осторожность и в распространении концепции витринита на морские и озёрные серии пород, так как в таких породах частицы, отражательная способность которых измеряется, редко являются витринитами высших растений и в большинстве случаев
Рис. 1-7. Корреляция отражательной способности витринита, Ro%, и степени углефикации с другими индексами зрелости и с положением зон генерации и разложения нефти и газа Вверху: по (Kalkreuth and Mc Mechan, 1984), внизу по (Tissot et al., 1987).
являются битуминоидами от планктона, ошибочно принимаемые за витринит (Waples, 1985; Durand et al. 1986). По термофизическим свойствам они отличаются от витринита. Аналогичная проблема существует и для континентальных (terrestrial) пород кембрий-ордовика и более древних возрастов. Они не могут содержать витринита, так как высших растений тогда не существовало. Во всех красноцветных формациях ОВ окислено. В известняках витриниты сохраняются реже и, если они присутствуют там, то их отражательная способность может отличаться от значений для нормального витринита той же степени углефикации (Buntebarth and Stegena, 1986).
Определённые ошибки в этом методе оценки катагенеза ОВ будут возникать и вследствие значительных разбросов в измеряемыx значенияx Ro, а также из за того факта, что в разрезе бассейна всегда будут присутствовать горизонты, в которых выделение витринита затруднено или невозможно вовсе. Например, при низких уровнях зрелости выделение витринитовых мацералов представляет большую проблему, и в связи с этим надёжность измерений Ro для значений меньших 0.3 - 0.4% крайне низка (Waples et al. 1992). Зависимость отражательной способности витринита от исходного химического состава витринита будет существенной (Durand et al.1986). Это объясняет тот факт, что большой разброс в значениях Ro% часто наблюдается даже в пределах одного бассейна (Tissot et al.1987). Чтобы сделать ошибку от вариаций в химическом составе витринита минимальной измерения Ro% проводят на образцах правильного витринита, выделенного стандартной процедурой из органической материи континентального происхождения. Не рекомендуется использовать эквивалентные виды витринита в ОВ типов I и II при создании универсальных шкал соответствия значений Ro% степеням преобразования ОВ (Tissot et al. 1987).
И всё же, при разумном учете сделанных замечаний метод оценки уровня зрелости ОВ и контроля через него палеотемпературных условий погружения осадочной толщи по измерениям отражательной способности витринита относится в настоящее время к наиболее надежным и распространённым методам в практике анализа нефетгазоносных бассейнов.
7.3 Использование измерений %Ro и других методов для оценки максимальных температур пород в истории погружения бассейна
Первоначально измерения отражательной способности витринита использовались для оценки максимальных температур Tmax в истории погружения свит. Для подобных целей в геологических исследованиях применялись и применяются целый ряд методов, таких как (Yalcin et al., 1997): 1) оценки Tmax по уровню зрелости ОВ (степени углефикации, отражательной способности витринита; 2) оценки, основанные на минералогических изменениях при диагенезе глинистых минералов и кристаллизации иллита; 3) методы, основанные на анализе жидкостных включений, например, температуры гомонизации жидкости; 4) геотермометры, основанные на специфических химических реакциях, например, характеризующих равновесие устойчивых изотопов (Hoefs, 1987) или равновесные состояния системы SiO2-Na-K-Ca (Ellis and Mahon, 1977); 5) Физзион-трэк анализ (анализ распределения следов от деления радиоактивных элементов в аппатите; Green et al., 1989; 1995); 6) на основе комбинации определений радиометрического возраста таких радиометрических систем, как K-Ar, Rb-Sr и U, которые замыкаются при различных температурах (Buntebarch and Stegena, 1986). Так как оценки палеотемператур до сих пор широко распространены в геологической литературе, мы коротко охарактеризуем каждый из этих методов. Начнём изложение с оценок максимальных температур пород по значениям отражательной способности витринита.
Отметим сразу, что развитие методов оценки максимальных температур в истории погружения осадочных свит (Tmax ) связано с тем, что в 70-ые и 80-ые годы прошлого века многие исследователи рассматривали температуру как основной и по сути единственный фактор эволюции зрелости ОВ осадков. Влиянием времени на процесс созревания ОВ при этом пренебрегалось. Считалось, что измеренные (или вычисленные) значения отражательной способности витринита %Rо должны отражать максимальные температуры пород в истории их погружения. Следуя таким взглядам, предлагались различные корреляционные соотношения между значениями Tmax и отражательной способностью витринита породы в воздухе %Rа и в масле %Ro . Например, в работах Аммосова и др. (1980) и Курчикова (1992) предлагается оценивать значения Tmax по измеренным величинам %Rа из соотношения
10×Rа (%) = 67.2×[1. + 0.066×(Tmax / 100.)2 ] (7-1)
- для образцов углистых прослоек в породах, из соотношения
10×Rа (%) = 67.2×[1. + 0.082×(Tmax / 100.)2 ] (7-2)
- для песчаников и алевролитов и по уравнению
10×Rа (%) = 67.2×[1. + 0.107×(Tmax / 100.)2 ] (7-3)
- для глин и аргиллитов. В приведённых выражениях Tmax выражена в °С. Прайс (Price, 1983) также полагал, что время в один и даже более млн. лет не оказывает заметного влияния на процесс созревания ОВ и на основании этого предложил соотношение, подобное (7-1) – (7-3), связывающее Tmax с отражательной способностью витринита в масле (%Ro):
Tmax (°С) = 302.97×log10 Ro(%) + 187.33 (7-4)
Несколько подобных соотношений было рассмотрено К. Баркером (Barker and Pawlevicz, 1986; Barker, 1988, 1993). Первое из них (Barker and Pawlevicz, 1986):
ln Ro(%) = 0.0078×Tmax (°С) - 1.2 (5)
опиралось на 600 измерений Tmax в 35 скважинах различных бассейнов мира. По мнению авторов, оно справедливо в интервале температур 25 £ Tmax £ 325°C и отражательных способностей витринита 0.2% £ Ro £ 4.0%. К. Баркер (Barker, 1988) предложил соотношение, описывающее ситуации с постоянной скоростью нагревания пород при погружении в бассейне:
Tmax (°С) = 104×ln Ro(%) + 148. (7-6),
и основанное на кинетической модели созревания витринита (Burnham and Sweeney, 1989). М. Джонсон и др. (Johnsson et al., 1993), анализируя эту формулу, замечают, что она неплохо описывает ситуацию со скоростями нагревания V = 0.1 – 1 °C/млн. лет, но для скоростей V = 10 – 100 °C/млн. лет недооценивает значения Tmax в области Ro < 0.5% и переоценивает их при Ro > 2%. В своей более поздней работе Баркер (Barker, 1993) предложил ещё один вариант корреляционной связи Tmax с %Ro, не содержащий ограничения на скорости нагревания пород,:
Tmax (°С) = [ ln( Ro(%) / 0.356) ] / 0.00753 (7-7)
Таким образом, в литературе предлагается достаточно много корреляционных соотношений Tmax - %Ro. На рис. 2-7 они сопоставлены друг с другом по результатам оценок Tmax для значений 0.4% £ Ro £ 4.0%.
Рис. 2-7. Соотношения, связывающие максимальную температуру Tmax в истории погружения породы с измеренными значениями отражательной способности витринита в масле %Ro, по различным литературным источникам: 1 (для углей), 2 (для песчаников и алевролитов), 3 (для глин и аргиллитов) – (Аммосов и др., 1980; Курчиков, 1992); 4 - (Price, 1983); 5 - (Barker and Pawlevicz, 1986); 6 - (Barker and Pawlevicz, 1986); 7 - (Barker, 1993); 8 - по температуре гомогенизации жидких включений (Tobin and Claxton, 2000).
Из этого рисунка очевиден значительный разброс в значениях Tmax , отвечающих фиксированным значениям Ro, который достигает 60 - 100°С для зрелости Ro ³ 0.7%. Этот разброс однозначно свидетельствует о том, что значение температуры (пусть даже и максимальное) одно не может определять зрелость ОВ в породах, и что время выдержки температуры играет заметную роль в созревании ОВ. Не исключено, что в отдельных интервалах Ro и в особых условиях осадконакопления (типа тех, что обеспечивают неизменную скорость прогревания пород) некоторые из приведённых соотношений неплохо описывают ситуацию, но как показывают исследования (см. ниже), одни и те же значения %Ro могут быть достигнуты, например, при более низких температурах но с большим временем выдержки породы (см. ниже). По этой причине всегда находится бассейн и формация с соответствующим интервалом зрелости и температур, для которых оценки по соотношениям (7-1) – (7-7) будут приводить к заметным ошибкам. Это обстоятельство имело следствием то, что популярность выписанных соотношений заметно снизилась за последние 10-15 лет.
Другим распространённым методом оценки палеотемператур пород в бассейнах является определение Tmax по анализу состава жидкостей, захваченных в процессе диагенеза матрицей пород. Применение метода возможно при выполнении следующих условий (Burruss 1989): 1) включение является однофазной жидкостью, 2) объём этой жидкоcти не меняется после её захвата породой, 3) состав её также оставался неизменным, 4) влияние давления на состав жидкости заранее известно, 5) время и механизм улавливания жидкости также известны. Перечисленные условия говорят о том, что необходима известная осторожность в применении метода (Burruss 1989). Во-первых, необходимы детальные петрографические исследования, чтобы установить относительное время формирования жидкого включения. Во-вторых, необходим тщательный анализ тектонического развития района и истории погружения бассейна для детализации истории вмещающих пород. Необходим также анализ фазового поведения и химического состава захваченной жидкости. Но и после этого остаются две важных проблемы - одна, связанная с предположением о неизменности химического состава жидкости после её захвата матрицей породы (имеются убедительные свидетельства, что это не всегда так), и другая, связанная с определением величины и типа давления, существовавшего в период вмещения жидкости - было ли оно литостатическим или гидростатическим (Burruss 1989). В случае, если все указанные проблемы решены, температура породы на момент захвата жидкости определяется по соответствующей Р-Т диаграмме равновесия жидкой и твёрдой фаз исследуемого вещества. В развитие этого метода Тобин и Клакстон (Tobin and Claxton, 2000) предложили использовать корреляционную связь температуры гомогенизации жидких включений Thom и отражательной способности витринита Ro% (Рис. 2-7):
Ro% = 1.9532 ´ log Thom – 2.9428 (7-8)
Они установили, что при использовании «идеального» ряда измерений соотношение (7-8) выполняется с коэффициентом корреляции 0.973 и дисперсией данных менее 0.12% Ro. Если же используется весь ряд мировых данных то соотношение вида:
Ro = 2.1113 ´ log Thom – 3.2640 (7-9)
будет выполняться c коэффициентом корреляции 0.81 и максимальной дисперсией данных менее 0.32% Ro (Tobin and Claxton, 2000). Температуру гомогенизации Thom часто используют как оценку максимальной температуры пород Tmax в процессе её погружения в бассейне. Однако, рис. 2-7 показывает, что кривая, построенная по формуле (7-9), заметно отличается от оценок Tmax по формулам (7-1) – (7-7), пересекая остальные линии на рис. 2-7. Она явно занижает температуры для Ro < 1.5% и даёт нереально высокие значения при Ro > 2% (Th = 540, 930 и 1600°C для Ro=2.5, 3 и 3.5%, соответственно).
Рис.3-7 Изменение изотопного отношения d13C с глубиной для газового месторождения бассейна Анадарко (США; Price, 1995).
В ряде работ (Rooney et al., 1995; Price, 1995 и др.) для оценки температуры генерации углеводородов предлагается использовать изменение изотопного состава углерода в ходе катагенеза ОВ (рис. 3-7). Результаты экспериментов по генерации газов ОВ типа II (материнские породы бассейнов Делавар и Вал-Верде в западном Техасе) при постоянной скорости нагревания пород 1°С/мин (левый рис. 4-7; Rooney et al., 1995) демонстрируют заметное изменение изотопного состава газов
Рис. 4-7. Температура генерации газа и изотопное отношение d13C для метана (d13C1), этана (d13C2) и пропана (d13C3), генерированных керогеном типа II материнских пород бассейнов Делавар и Вал-Верде в западном Техасе при скорости нагревания пород 1°С/мин (левый рис., по Rooney et al., 1995) и Изотопное отношение d13C для метана, генерированного при различных температурах в ходе гидроидного пиролиза образцов пород с ОВ различного типа (правый рис., по Price, 1995).
с температурой и тем самым подтверждают принципиальную возможность использования этой зависимости для оценки температуры генерации газов ОВ данного типа. О том же говорят и результаты гидроидного пиролиза образцов пород с ОВ различного типа, приведённые на левом рис. 4-7. Они также наглядно демонстрируют изменение изотопного отношения d13C для метана, генерированного при разных температурах (Price, 1995). Однако, эти эксперименты указывают и на крайне высокую чувствительность изменений d13C к вариациям в составе и типе ОВ, в силу чего применение метода возможно лишь после детального анализа состава ОВ и получения соответствующих зависимостей именно для анализируемого типа вещества. Широкий разброс в значениях d13C с глубиной, показанный на рис. 3-7 для типичного разреза осадочного бассейна, в основном и вызван вариациями в составе и типе ОВ в породах макро и микро слоёв разреза. Такой разброс сильно ограничивает достоверность оценок температур по изотопным отношениям в газах реальных осадочных разрезов.
Процесс преобразования смектита в иллит в глинистых минералах также иногда используется для контроля палеотемпературных условий в бассейнах. Однако, рис. 5-7 показывает, что интервалы температур, характерные для процесса, довольно широки. Такой разброс по температурам не удивителен, так как лабораторные исследования показывают, что процесс преобразования смектита в иллит управляется кинетической реакцией 6-ого порядка (Pytte and Reynolds, 1989) и, следовательно, время влияет на скорости этих переходов наряду с температурой. Подробнее эти реакции будут рассмотрены в заключительном разделе этой главы, здесь же отметим, что разумные оценки температуры перехода смектита в иллит возможны лишь для изотермического варианта преобразования минералов, но и тогда погрешность метода будет заметной.
Рис.5-7 Преобразование глинистых минералов по данным анализа образцов из 10 скважин Северного моря (Dypvik, 1983). Процессы исчезновения смектита и слоёв иллита разных уровней в смешаннослойных смектит-иллитовых глинистых минералах привязаны к значениям температур и отражательной способности витринита.