Очистка газов под действием инерционных и центробежных сил
Принцип очистки газов под действием инерционных сил заложен в конструкции отстойного газохода, очистка под действием центробежных сил осуществляется в циклонах.
Отстойный газоход с отбойными перегородками(рис. 5.2) предназначен для разделения крупнодисперсных пылей. Перегородки служат для завихрения газового потока. Возникающие при этом инерционные силы способствуют интенсивному осаждению взвешенных твердых частиц. Осевшая пыль выгружается из сборников 2 по мере накопления с помощью шиберов. Такие отстойники часто выполняют в системе газоходов.
Инерционные пылеуловители характеризуются простотой устройства и компактностью. Степень очистки в них выше, чем в пылеосадительных камерах, и составляет примерно 60 %. В инерционных пылеуловителях улавливаются частицы размером более 25 мкм.
Циклоны позволяют разделять пыли в поле центробежных сил. Циклоны выпускают с корпусом диаметром от 100 до 1000 мм. Эффективность их работы характеризуется фактором разделения. Степень очистки газов зависит от конструкции циклона, размера частиц и их плотности. Например, если КПД циклона при улавливании частиц диаметром 25 мкм составляет 95 %, то при диаметре частиц 10 мкм КПД снижается до 70 %. Степень очистки газов от пыли определяют по нормалям и номограммам, составленным на основании экспериментальных данных.
Циклон, представленный на рис. 5.3, обладает небольшим гидравлическим сопротивлением и позволяет достигать относительно высокой степени очистки.
Сущность циклонного процесса, заключается в следующем:
Запыленный газ вводится в корпус 1 через штуцер тангенциально со скоростью 20-30 м/с. Благодаря тангенциальному вводу он приобретает вращательное движение вокруг трубы для вывода очищенного газа, расположенной по оси аппарата. Частицы пыли под действием центробежной силы отбрасываются к стенкам корпуса. В аппарате создаются два спиральных потока: внешний поток запыленного газа, который движется вниз вдоль поверхности стенок циклона, и внутренний поток очищенного газа, который поднимается вверх, располагаясь вблизи оси аппарата, и удаляется из него. Пыль концентрируется вблизи стенок и переносится потоком в разгрузочный бункер 3.
Степень очистки газа в циклонах можно увеличить либо путем уменьшения радиуса вращения газового потока, либо увеличением его скорости, что сопряжено со значительным возрастанием гидравлического сопротивления и увеличением турбулентности газового потока (которая ухудшает процесс осаждения и способствует перемешиванию очищенного газа с запыленным). Однако уменьшение радиуса циклона приводит к снижению производительности. Поэтому при больших расходах запыленного газа используют сразу несколько циклонных элементов меньшего размера, объединенных в одном корпусе. Такие аппараты называют батарейными циклонами (мультициклонами).
Батарейный циклон, состоящий из параллельно включенных циклонов малого диаметра (150...250 мм), позволяет увеличить центробежную силу и скорость осаждения частиц. Загрязненный газ через входной патрубок поступает в газораспределительную камеру и распределяется по циклонным элементам, установленным в общем корпусе.
В циклонные элементы газ поступает не тангенциально, а сверху через кольцевое пространство между корпусом циклона и выхлопной трубой. Для создания вращающегося потока газа в кольцевом зазоре расположено закручивающее устройство, выполненное в виде винта (лопасти).
Пыль собирается в коническом бункере, а очищенный газ выходит из батареи через общий отводящий патрубок.
К недостаткам циклонов относятся сравнительно высокое гидравлическое сопротивление, невысокая степень улавливания частиц размером менее 10 мкм, механическое истирание корпуса аппарата твердыми частицами, чувствительность к колебаниям нагрузки по газу или жидкости.
ФИЛЬТРОВАНИЕ ГАЗОВ
В зависимости от вида фильтровальной перегородки фильтры бывают с мягкими, полужесткими и жесткими пористыми перегородками.
Фильтры с мягкими фильтровальными перегородками — рукавные, или мешочные, широко применяют для очистки газов от пыли. Мягкие пористые перегородки выполняют из тканевых материалов, нетканых волокнистых материалов, пористых листовых материалов (металлоткани, пористые пластмассы и резины).
Батарейный рукавный фильтр с фильтрующими элементами из различных тканевых материалов изображен на рис. 5.6. Рукава и мешки подвешивают в прямоугольном корпусе к общей раме. Запыленный газ поступает снизу внутрь рукавов в открытые торцевые отверстия. Проходя через боковые цилиндрические поверхности рукавов, газ фильтруется, а пыль оседает на внутренней поверхности рукавов.
В процессе эксплуатации слой пыли растёт и сопротивление фильтра увеличивается. Для регенерации фильтра рукава или мешки периодически встряхивают специальным механизмом 2, смонтированным на крышке фильтра. Иногда применяют обратную продувку газом или воздухом фильтрующих элементов фильтра. Осевшая пыль собирается в коническом днище фильтра, откуда выгружается шнеком.
В ряде случаев используют секционные фильтры. Каждая секция в таком фильтре имеет свой встряхивающий механизм, что позволяет последовательно проводить регенерацию фильтрующих элементов без отключения всего фильтра.
Мешочный фильтр с соплами Вентури для регенерации фильтров представляет собой цилиндрический аппарат с коническим сборником для пыли. Запыленный газ подается в фильтр снизу через штуцер внутрь мешков. Фильтруясь через мешочные фильтры, газ очищается и выходит через штуцер в крышке фильтра. Частицы осаждаются на поверхности мешков.
Для чистки мешков внутри каждого из них имеется сопло Вентури, через которое короткими интенсивными впрысками подается сжатый воздух. При этом мешки раздуваются и частицы сбрасываются с материала мешка практически полностью.
Такие фильтры рассчитывают по выбранной удельной скорости фильтрования, которую можно принимать в зависимости от плотности и степени запыленности газа в пределах от 0,01 до 0,06 м3/(м2*с).
Рукавные (мешочные) фильтры обеспечивают высокую степень очистки газа: концентрация пыли в очищенном газе составляет несколько миллиграммов на 1 м3.
Фильтры с полужесткими фильтровальными перегородками обычно состоят из кассет, в которых между сетками зажимается слой стекловолокна, металлической стружки или других материалов, пропитанный специальным составом для лучшего улавливания взвешенных в газе частиц. Кассеты, объединенные в секции, применяют для очистки малозапыленных газов с концентрацией пыли 0,001...0,005 г/м3.
Фильтры с жесткими фильтровальными перегородками, изготовленными из пористой керамики, спеченных или спрессованных металлических порошков, а также пластмасс, используют для тонкой очистки газов. Фильтровальные элементы могут иметь цилиндрическую кольцевую или плоскую форму.
Патронный фильтр с цилиндрическими фильтровальными элементами из пористой керамики изображен на рис. В корпусе фильтра на решетке 3 расположено несколько цилиндрических фильтровальных элементов. Запыленный газ поступает в нижнюю часть фильтра, проходит через фильтровальные элементы и очищается от взвешенных частиц. Осадок собирается на внешней поверхности фильтровальных элементов, а очищенный газ выходит из внутреннего объема фильтровальных элементов и выводится из фильтра. Для регенерации фильтров их периодически продувают обратным током сжатого газа, подаваемого через коллектор. При этом пыль собирается в конической части днища и удаляется в сборник пыли.
В фильтрах с металлокерамическими элементами можно очищать пыль, содержащую взвешенные частицы размером более 0,5 мкм.
МОКРАЯ ОЧИСТКА ГАЗОВ
Мокрую очистку газов применяют тогда, когда допустимы увлажнение и охлаждение газа, а взвешенные частицы имеют незначительную ценность. Охлаждение газа ниже температуры конденсации находящихся в нем паров способствует увеличению плотности взвешенных частиц. При этом частицы играют роль центров конденсации и тем самым обеспечивают выделение их из газового потока. Если взвешенные частицы не смачиваются жидкостью, то очистка газов в мокрых пылеулавливателях малоэффективна. В этом случае для повышения степени очистки к жидкости добавляют поверхностно-активные вещества.
Степень очистки газов от пыли в мокрых пылеулавливателях колеблется в зависимости от конструкции от 60 до 85%.
Недостаток мокрой очистки — образование сточных вод, которые также должны очищаться.
Скрубберы, полые или насадочные (рис. 5.8), являются простейшими мокрыми пылеулавливателями для очистки и охлаждения газов. Запыленный газ подается в нижнюю часть скруббера и движется противотоком к жидкости, подаваемой через разбрызгиватель или форсунки со скоростью около 1 м/с. При взаимодействии газа и жидкости происходит механическая очистка газа. Степень очистки достигает 75...85 %. В качестве насадка используют хордовые или кольцевые элементы.
Пенные барботажные пылеулавливатели предназначены для очистки сильнозапыленных газов. Барботажный пылеулавливатель представляет собой тарельчатый скруббер (рис. 5.9). Запыленный газ подается в нижнюю часть скруббера и движется вверх. Попадая на перфорированную тарелку, куда подается промывная жидкость, газ барботирует через нее, в результате чего создается подвижная пена, которая обеспечивает большую поверхность контакта и высокую степень очистки газа. В слое пены взвешенные частицы поглощаются жидкостью. Загрязненная жидкость сливается через регулирующий порог. Пенные скрубберы имеют, как правило, несколько перфорированных тарелок. Степень очистки газа в таких аппаратах достигает 99 %.
Скрубберы Вентури также применяются для мокрой очистки воздуха. В них достигается высокая степень очистки, равная 98 %. Недостаток их — большое гидравлическое сопротивление (порядка 1500...7500 Па) и необходимость установки каплеотбойника. Скруббер Вентури (рис. 5.10) состоит из двух частей: трубы Вентури, в которой происходит очистка воздуха, и разделителя, предназначенного для отделения капелек воды от газового потока.
Запыленный газ вводится через конфузор в трубу Вентури. Через отверстия в стенке конфузора туда же впрыскивается вода с помощью распределительного устройства. В горловине трубы скорость газа достигает порядка 100 м/с. Сталкиваясь с газовым потоком, вода распыляется на мелкие капли. Высокая степень турбулентности газового потока способствует коагуляции пылинок с каплями жидкости. Относительно крупные капли жидкости вместе с поглощенными частичками проходят через диффузор трубы Вентури, где их скорость снижается до 20-25 м/с, и попадают в циклонный сепаратор. Здесь капли под действием центробежной силы отделяются от газа и в виде суспензии удаляются из нижней конической части.