Неспецифические органические вещества
Органическое вещество почв представлено органическими остатками живых организмов, продуктами их метаболизма, а также специфическими органическими соединениями, носящими название почвенного Гумуса. По современным представлениям все органические вещества, находящиеся в почвенной массе генетических горизонтов, делятся на две группы.
Неспецифические, т. е. вещества не почвенного происхождения, а имеющие фито-, зоо-, микробоценотическую природу и поступающие в процесс почвообразования как отмирающая био масса (органические остатки) и как продукты жизнедеятельности живых организмов.
Почвенный гумус или специфические органические вещества почвенно-генетической природы, присущие только почвам.
В вещественном составе почв органическим соединениям принадлежит особая роль, поскольку гумусообразование и гумусонакопление связано только с почвообразовательным процессом и не наследуется, как правило, от материнской почвообразующей породы, хотя, безусловно, материнские породы влияют на состав и свойства гумуса.
Из массы органических веществ биологического происхождения в почвоведении широко представлены углеводы (целлюлоза, моносахариды, дисахариды, гемицеллюлоза, пектиновые вещества), лигнин, белки, жиры, липиды, дубильные вещества, воски и смолы и др. Особую роль играют ферменты и фенолы.
Разные биологические объекты, поступающие в процесс почвообразования, весьма варьируют по химическому составу (табл. 1). Углеводы — большая группа органических веществ, куда входят моносахариды, дисахариды, крахмал, целлюлоза (клетчатка), гемицеллюлоза и др. Большая часть приходится на долю целлюлозы. Особенно много ее в древесине — 50—60%. В листьях и травах ее содержится около 30%.
Углеводные компоненты, поступающие в почву с растительными II животными остатками, довольно быстро подвергаются различным превращениям: ферментативному гидролизу, окислению, конденсации. Их химическая трансформация в дальнейшем может происходить различными путями: а) в условиях высокой биологической активности наблюдается распад углеводных соединений до мономеров с их дальнейшей конденсацией; 6) низкая биологическая активность способствует накоплению высокомолекулярных соединений за счет процессов ароматизации и карбоксилирования. Наиболее быстро процессам разложения подвергаются простые углеводы (моно- и дисахариды). Максимальное разложение углеводов наблюдается в первые три месяца при значительном накоплении новообразеванных гемицеллюлоз.
Специфические функции углеводов в почве:
формирование почвенной структуры за счет образования водопрочных агрегатов и усиления их стабильности, определяемых высокой -клеящей способностью микробных слизей, обусловленных различными углеводами;
•образование органоминеральных золей с полуторными окислами и глинистыми частицами; ускорение выветривания минералов за счет образования хелатных соединений;
•участие в ионнообменных процессах, т. е. значительное влияние на поглотительную способность почвы;
•влияние на питание растений как путем непосредственного поглощения (моносахариды), так и косвенным, через образование различных соединений (полисахариды);
Химический состав органических остатков, % на сухую беззольную массу (Александрова)
•трансформация гумусовых веществ микроорганизмами ускоряется в присутствии углеводов как источника энергии и углерода.
Хотя вопросы о распространении углеводов в почвах, влиянии типа почвы на их содержание и распределение пока изучены недостаточно, в целом, можно, сделать вывод о существенной роли углеводов в почвообразовании.
Гемицеллюлоза сопутствует целлюлозе и составляет 15—30% растительной массы.
Молекула целлюлозы построена из повторяющихся звеньев ангидро-D-глюкозы, соединенных гликозидной связью:
Целлюлоза построена из повторяющихся одинаковых звеньев; многие другие полисахариды при гидролизе дают смесь моносахаридов. Сложными полисахаридами являются гемицеллюлозы, образующие при деструкции глюкозу, маннозу, галактозу и др. Гемицеллюлозы отличаются от целлюлозы более легкой растворимостью в щелочных растворах; они легче гидролизуются разбавленными кислотами.
Лигнин отличается высоким содержанием углерода, наличием бензольных колец с гидроксильными (ОН) и метоксильными (ОСН3) группами, которые входят затем как структурные компоненты гумусовых веществ. В растительных остатках содержание лигнина может достигать 35%.
В основе строения макромолекулы лигнина лежит элементарное звено типа С6С3, которое называют фенилпропановым звеном:
Белки и аминокислоты — главные химические компоненты неспецифических органических веществ, содержащие азот и фосфор. Содержание белков в биомассах крайне неодинаково: древесина — <1, сено (трава) — 5—10, грибы — 10—50; бактерии — 40—80%.
Белки сложены полипептидными цепями, состоящими из остатков аминокислот. Простые .белки — протеины — содержат только аминокислоты. Сложные белки — протеиды — содержат протеины и простетическую группу, в роли которой выступают углеводы, липиды, нуклеиновые кислоты и др.
ПОДРОБНЕЕ
Аминокислоты содержат одновременно кислотные —СООН и .основные —NH2 группы, благодаря чему они обладают как кислотными, так и основными свойствами. В твердом состоянии аминокислоты находятся в форме диполярных ионов или цвиттер-ионов: Они возникают вследствие того, что α-аминогруппа связывает водородный ион карбоксильной группы. В растворах характер молекулы зависит от кислотности среды. В кислой среде цвиттер-ион протонируется, и молекула в целом приобретает положительный заряд, становится катионом. В щелочной среде молекула теряет протон и становится анионом:
В процессах почвообразования эти химические соединения подвергаются действию протеолитических и дезаминирующих ферментов. Аминокислоты в почвах могут быть свободными и связанными. Однако в отличие от углеводных соединений количество свободных аминокислот больше содержания связанных, а роль их более существенна, так как они являются структурными элементами в синтезе белка, субстратом эндогенного дыхания, регулятором ферментативных реакций. По профилю наблюдается снижение как количества так и разнообразия состава аминокислот. При этом в сумме свободных аминокислот возрастает относительное количество нейтральных соединений, устойчивых к минерализации. Одной из особенностей аминокислотного состава почв является корреляция последних с запасами общего и гидролизуемого азота, почвенного гумуса. Таким образом, аминокислоты в почве являются важным звеном в системе органическое вещество — питание растений, обеспечивая условия для развития почвообразовательного процесса и возделывания сельскохозяйственных растений. .
Смолы имеют различное химическое строение. Чаще всего встречаются в хвойных деревьях.
Воски выполняют функции защитных веществ, содержатся в незначительных количествах.
Дубильные вещества содержатся почти во всех растениях. Их много в коре древесных пород (5—20%), мало в травах и микроорганизмах.
Источниками фенольных соединений являются также дубильные вещества, которые разделяют на две группы: гидролизуемые и конденсированные (негидролизуемые). Гидролизуемые дубильные вещества представлены смесью сходных по строению веществ. В их основе лежит молекула глюкозы (или другая гексоза), которая эфирными связями связана с галловой или эллаговой кислотой:
Смолы, воски и дубильные вещества плохо разлагаются в почве, а в некоторых случаях угнетают почвенную микрофлору.
Зольные вещества составляют золу, оставшуюся после сжигания растительных и животных остатков. Содержание зольных элементов в живых объектах варьирует в зависимости от вида, возраста и среды обитания. В растительных остатках золы около 5%, в, древесине мало, около 1%, в травах много, около 10%. Основную массу золы составляют Са, Мg, К, Nа, Si, Н, S, Fе, А1, Мn и многие микроэлементы.
Ферменты определяют ферментативную активность почвенной массы, имеют биологическое происхождение и являются обязательными катализаторами всех биохимических процессов, происходящих при почвообразовании. Очень много ферментов участвуют в катализе процессов расщепления, превращения, минерализации органических веществ неспецифической природы и гумуса.
Фенолы представляют собой особый класс органических соединений. Фенольные соединения присутствует во всех трех фазах почвы и участвуют в биологических, гидрологических, геологических, химических, биохимических и физико-химических процессах, происходящих в почве, подвергаясь многообразным метаморфозам биотического и абиотического синтеза и разложения. Вещества фенольной природы принимают участие в образовании органо-минеральных соединений. Почвенные фенолы существуют в нескольких формах; свободные, связанные и прочносвязанные с почвенной матрицей и не передвигающиеся в профиле почвы. Соотношение между ними определяется химической структурой фенолов и совокупностью почвенных условий. .
Таким образом, все неспецифические органические вещества почв по их биохимической значимости в процессах почвообразования можно разделить на 5 групп: