II. Физических сигналов для измерения очень много. Причем
большинство из них непрерывно во времени.
U
t
t f(t)
Задача измерительных преобразований - сформировать электрический сигнал, один или несколько параметров которого пропорциональны измеряемой величине Х.
В области электрических измерений к числу преобразуемых параметров относят - что измеряем:
1. Напряжение и силу постоянного тока.
2. Средневыпрeмленное. значение переменного напряжения и тока.
3. Среднеквадратическое (действующее) значение напряжения и тока.
4. Пиковые значение напряжения и тока.
5. Активная мощность.
6. Реактивная мощность.
7. Частота переменного тока (период).
8. Разность фаз.
9. Активное сопротивление.
10. Значение индуктивности и емкости.
11. Модуль и объект комплексного сопротивления.
12. cos ф
13. Распределение энергетических соотношений по частоте
(спектр).
14. Число оборотов вала.
15. Комплексный показатель качества электричества.
Помимо основных, измеряют неэлектрические характеристики:
температуру среды, влажность, давление и т.д.
Посредством измерительных преобразований - это множество преобразуется к:
1. Постоянному напряжению.
2. Амплитуде значения переменного напряжения.
3. Постоянный ток.
4. Частота (период).
5. Интервал времени - как частный случай периода.
Частный случай измерительного преобразования - нормализация. Получение однородного выходного сигнала, пропорционально по своему значению, входному. Например, простейший измерительный преобразователь - резистивный делитель напряжения. На входе - постоянный уровень, на выходе - ?
Любой измерительный прибор обязан работать на вышесказанных условиях.
Фазоповоротная схема.
В ряду функциональных преобразований особое место занимают некоторые устройства: Фазоповоротные схемы времяимпульсные измерительные преобразователи, преобразователи частоты изменения амплитуды. Фазоповоротная схема строится, как правило, на основе активных элементов. На сегодня основной активный элемент - операционный усилитель. Эл. Операционный усилитель охвачен отрицательной обратной связью (ОС), уменьшающей коэффициент передачи каскада. В целом коэффициент передачи зависит от величины RОС,R1,R2.
RОС R1 UВХ UВЫХ C R2 Сх 1 |
Сдвиг по фазе входного гармонического сигнала осуществляется за счет «затягивания» его на входе емкостью С. Постоянная цепи CR2 определяет величину сдвига. Если входной сигнал подавать симметрично на оба входа усилителя, получается дифференцирующая схема и выходной сигнал - разностное напряжение относительно земли. Применяется не часто. Как правило, оба входа объединяются и входной сигнал подключается относительно земли.
U(t)
t
R1 UВХ UВЫХ R2 C Сх 2 |
Возможно изменение схемы. СХ1 не используется на НЧ. СХ2 не используется на ВЧ.
U(t) U(t)=Umhn(wt+ ) tИ tИ t t 0,5 h RОС R1 UВХ Типовая схема ограничителя R2 |
Время импульсные измерительные преобразователи предназначены для замены синусоиды на последовательность импульсов. Если у входного синусоидального сигнала существует амплитудное значение, частота, сдвиг по фазе, то у времяимпульсного преобразователя 1 информационный параметр - это длительность импульса.
В качестве простой схемы преобразователя используют операционный усилитель: выбрав большой коэффициент передачи усилитель ограничивает выходной сигнал и он имеет форму, близкую к прямоугольнику.
Для улучшения характеристики на вход усилителя включают ограничитель .
RОС R1 VD1 VD2 R2 Схема с ограничением. |
Рабочая, так как входной сигнал не должен превышать напряжение питания.
Измерительные преобразования изменений частоты в изменении амплитуды.
Контроль измерения частотных характеристик сигнала возможно через измерение пропорциональной величины амплитуды напряжения.
RОС R1 R2 UВЫХ UВХ C1 C3 C2 R4 Двойной Т-мост. |
f . В основе схем частотно-зависимые элементы. Рабочий элемент схемы - операционный усилитель
Основная частотная характеристика двойного Т-моста. Коэффициент передачи такой схемы по частоте K(w).
K(w) kMAX w w0 |
он изменяется с изменением частоты. В результате входной сигнал, а, следовательно, и выходной ОУ, определяемый напряжением изменяется пропорционально.
В качестве входных частотозависимых цепей можно с успехом применять резонансные характеристики контуров, RLC фильтров, которые дадут изменение коэффициента передачи, но большую нелинейность. В схемах автоматики часто необходимо зафиксировать факт изменения частоты (релейный сигнал). Поэтому в них и применяют линейные RLC фильтры.
Измерительные и функциональные преобразователи входят как обязательные элементы в состав любого измерительного прибора. Непосредственно измерительный механизм, оставаясь постоянным не может реагировать на сигналы в широком диапазоне, поэтому измерительные и функциональные преобразователи в зависимости от переключателей диапазона измерений формируют на входе сигналы той оптимальной величины, что необходима для измерительного механизма, т.е. играет роль своеобразных делителей. Поскольку основными измеряемыми величинами являются напряжение и уровень тока, функциональные преобразователи не зависимо от рода входной величины на выходе формируют величину напряжения (реже тока).
Измерение электрического тока.
1. Измерение величины постоянного тока
2. Измерение величины переменного тока промышленной частоты
1. Классификация всех измерительных приборов:
Разделяют их на 2 группы: электромеханические и электронные, в том числе цифровые. Принципиальное различие между группами в том, что приборы электронные имеют усилитель входного сигнала.
Регулировка диапазона в электронных приборах удобнее, диапазон шире. Электромеханические приборы, как правило, ослабляют сигнал (делят, уменьшают при переключении диапазона).
Если электромеханический прибор имеет конструктив только измерительного механизма, предел измерения у него фиксирован.
ИПр ИМ ОУ
фиксированный диапазон
В большинстве случаев для измерения величины постоянного тока электромеханическими приборами используют измерительный механизм магнитоэлектрической системы.
Прибор с 2-мя рамками
для уравновешивания стрелки (логометр)
Приборы этой системы составляют абсолютное большинство лабораторных точных измерителей. Класс точности приборов высок и составляет порядка (0,05;0,1;0,2). Конструктивно измерительный прибор имеет подковообразный магнит с замыканием. В магнитопроводе находится легкая рамка, соединенная со стрелкой или с указателем. Прибор последовательно включается в цепь, следовательно необходимо, чтобы по нему протекал ток пружины- растяжки играют двойную роль. Они служат проводниками для тока: растяжка 1, рамка, растяжка 2, создают противодействующий момент, останавливающий рамку в конкретном положении.
При прохождении электрического тока по рамке формируется рабочий крутящий момент, пропорциональный току в рамке.
Рамка в магнитном поле при этом отклоняется и растяжки, закручиваясь, формируют тормозящий момент, который пропорционален углу поворота - . Рамка отклоняется, когда
т.е ток определяется параметрами измерительного механизма.
RШ RШ + А rПР RШ RН - для измерения малых величин |
Приборы магнитоэлектрмческой системы позволяют измерять малые значения постоянного тока с высокой точностью .С ростом величины тока
размеры увеличиваются (провод рамки должен быть толще ), поэтому для измерения больших токов такие приборы не применяют.
К ним добавляют измерительные преобразователи - шунты - (параллельно включаемые сопротивления строго фиксированной величины).
Через RШ протекает большая часть тока.
Внимание! Введение шунта снижает точность измерительного механизма. Главным недостатком измерительных механизмов этой системы является не стойкость к механическим воздействиям. Конструкция легкая, непрочная. Поэтому измерительные механизмы не выносят ударов, вибраций, агрессивной внешней среды. Отсюда приборы используют в лабораторных условиях.
Логометр имеет 2 подвижных рамки, включенных последовательно.
Одна рамка создает рабочий момент, другая - тормозящий. Металлических пружин нет. Поэтому они более точные.
Электронные приборы основаны на измерении величины падения напряжения на измерительном резисторе.
+ i RU V - |
Метод косвенный, хотя шкала в значениях тока. Прибор последовательно включается в измеряемую цепь, через измерительный резистор протекает ток, создавая на нем падение напряжения. Напряжение усиливается активными элементами прибора и поступает на измерительный механизм. В зависимости от последнего, приборы разделяют на просто электронные и цифровые.
У электронных измерительный механизм, как правило, магнитоэлектрической системы.
Цифровые приборы имеют шкалу с десятичными разрядами, поэтому в них усиленный сигнал преобразуется в двоично или двоично-десятичный код и отображается на индикаторах. Цифровые приборы более точные, удобные в пользовании. Основным достоинством электронных приборов считается широкое изменение коэффициента передачи (усиление), что приводит к возможности измерения в большом диапазоне.
Недостаток - более сложные, потребляют энергию. Измерительный механизм вносит определенную погрешность в измеряемую цепь, включение последовательно сопротивления прибора уменьшает реальный ток цепи, поэтому стремятся снизить сопротивление прибора. Но в электромеханических приборах это приводит к снижению чувствительности. Электронные приборы более гибки и измерительное сопротивление в них можно взять небольшим. Помимо приборов магнитоэлектрической системы для постоянного тока используют электромагнитную систему, электродинамическую, термоэлектронную. Все эти приборы имеют большую погрешность.
2. Эквивалентная схема любой конструкции включает в себя 3 распределенные величины:
cопротивление, индуктивность, емкость.
Кроме того, мы должны учитывать индуктивность проводников, поэтому с ростом частоты переменного тока увеличивается влияние реактивностей и точность прибора падает. На промышленной частоте (50, 400, 1000Гц) наращиванием (распределением) индуктивности и емкости пренебрегают поэтому схема как правило имеет вид:
Вх L R Вых |
Приборы магнитоэлектрической системы для измерения переменного тока не применяют. Если измеритель комбинированный применяют выпрямитель переменного тока (мостовая схема выпрямления) и измерительный мел-м магнитоэлектрической системы.
Чаще непосредственно используют измерительные механизмы других систем, электромагнитные системы, в которых в которых измеряемый ток проходит через катушку с отверстием.
Рост числа витков n к увеличению R прибора.
|
Электродинамическая система. Измерительный механизм такой системы представляет из себя катушку с проводом, в котором вращается рамка. Катушки соединены последовательно, поэтому вращение магнитных потоков достаточно хорошее, также нужны пружинки для Мтормоз .
Электродинамические измерительные механизмы имеют несколько меньшую точность (индекс 0,5; 1; 1,5; 2) и сопротивление прибора также оказывает влияние на точность расчета. С целью увеличения магнитного потока постоянную неподвижную катушку помещают в сердечник, получают приборы ферродинамической системы и обозначают:
В приборе электродинамической системы переключение пределов измерения выполняется за счет коммутации рабочих обмоток катушки. На переменном токе в электродинамической системе можно изменять пределы измерения. Измерение больших величин переменного тока требует использования измерительных преобразователей тр-ров тока.
1. Малое сопротивление приборов (RПР)
А ЕRН(z) RПР << RH |
Приборы термоэлектрической системы имеют малое собственное сопротивление. Диапазон измерения широк от десятков mA до десятков А. Для измерения больших значений тока применяют тр-ры тока. Любой шунт у прибора уменьшает его собственное сопротивление. Отсюда, приборы с RШ более удобны для измерения с малой нагрузкой. Включение амперметра в цепь приводит к нарушению естественного состояния цепи.
Электрические приборы для измерения тока имеют стандартную величину сопротивления прибора, порядка 10 Ом.
2. Зависимость показаний прибора от формы тока.
Здесь следует ориентироваться на действительные значения переменного тока (аналогично напряжению). Абсолютное большинство амперметров переменного тока рассчитаны на синусоидальный сигнал.
3. Зависимость показаний от частоты. С ростом частоты переменного тока (400 - 1000 Гц) сказывается инерционность прибора, поэтому меньшую погрешность имеют приборы с выпрямлением. Обязательно стрелку прибора рассчитывают до частоты 10 - 30 кГц, не больше. С учетом некоторой стандартности приборы без шунтов имеют предел измерения 100 mA (200 mA). Менее точные (электродинамические) порядка 1 А.
Измерение величины напряжения в цепях.
1. Измерение напряжения постоянного тока
1. Измерение напряжения в цепи переменного тока
Прибор для измерения напряжения напряжения подключается параллельно нагрузке, поэтому
1. Для измерения напряжения постоянного тока используют те же
измерительные механизмы, что и для самого тока. Последовательно в цепь включаются добавочные сопротивления.
A RДОБ |
Фактически приборы измеряют ток, ответвляются по параллельной цепи от нагрузки и сам принцип такого измерения уже вносит погрешности в исследуемую цепь. Изменение пределов измерения достигается подключением последовательно к измерительному механизму цепочки делителей (рис 1).
1000 100 1
Или параллельно (рис 2).
1000 100 1
Величина напряжения, измеряемого элементами измерительно - механическими (ИМ) обычно ограничена: 300 В, реже 600 В.
R1 R2 V |
Для увеличения диапазона измерения напряжения чаще всего применяют
делители (рис 3). В любом случае цепочка делителей высчитывается дополнительно помимо приведенной погрешности, поэтому рекомендуется применять приборы с большим входным сопротивлением, а этим требованиям отвечают e вольтметры, величина которых достигает нескольких десятков МОм. Для справки: сопротивление электродинамического вольтметра = 1 кОм.
Электронные вольтметры постоянного напряжения имеют следующую структуру.
Блок UX делит елей |
Входное напряжение поступает в блок делителей где в зависимости от диапазона. В высокоомных делителях формируется часть от измеряемой величины. Далее усилитель постоянного тока (УПТ) на ОУ, выходной сигнал которого и регистрируется измерительным механизмом. Большое значение придается стабильности коэффициента передачи УПТ. Делители высокоомные, с тем они должны быть точными. Промышленность же особо точные высокоомные резисторы не выпускает, поэтому делители собирают из цепочки резисторов, подбирая при настройке. Суммарная погрешность такой схемы превышает погрешность ИМ.
Небольшие величины постоянного напряжения измеряют с помощью компенсаторов. Компенсатор - источник ЭДС, величину которой можно изменить с большой точностью (например набором переключателей). Значение напряжения фиксируется на компенсаторе при совпадении стрелки с нулевым значением.
Компенсатор U RН |
Компенсаторы - не самые простые элементы, поэтому их применяют в точных лабораторных измерениях. При измерении высоких напряжений с помощью компенсаторов на входе их ставят делители. Для измерения величины постоянного напряжения чаще применяют ИМ известных систем. Недостаток - погрешность вследствие отвлечения тока в цепи ИМ.
Второе, положительная величина напряжения ограничена значением порядка 300 В (600 В). Более точной считается e вольтметра с цифровым отсчетом, когда вместо измерительного механизма используется АЦП и индикаторы. В лабораторных работах для точных измерений применяют компенсаторы - более точные устройства, но громоздкие для постоянного использования. Часто встречающиеся сигналы постоянного тока, изменяются по величине.
е прибор отметит мелькание младших разрядов. Стрелочный прибор - стрелка будет вибрировать, но занимать среднее положение.
2. Промышленная частота.
V |
ИМ электромагнитной и электродинамической систем используют с добавочными сопротивлениями, подключенными последовательно к катушкам. Ток полного отклонения в таких приборах может достигать 200 mA уже при напряжении порядка 30 В, поэтому наибольший предел измерения в вольтметре с добавочными сопротивлениями 600 В. Повысить его можно с помощью первичных преобразователей: измерит. тр-рах.
Напряжение его подключенное к нагрузке снижает точность измерения, поскольку собственные потери не учитываются. Делители на резисторах целесообразно использовать на низких частотах, т.к. сказывается емкость элементов. Делители могут быть как выносными, так и встроенными. Делитель позволяет уменьшить входной сигнал для прибора, а добавочный резистор - уменьшает ток через прибор. Приборы электромеханические сохраняют свои позиции при которых текущее значение стационарно ,используются на щитах, пультах, индикаторах. Вместе с тем , цифровые вольтметры более удобны в пользовании, обеспечивают высокую точность, поэтому в последнее время они внедряются повсеместно по критериям точности. Основное отличие структуры цифрового вольтметра переменного напряжения от рассматриваемого - в входном преобразователе.
Делитель входной АЦП преобразователь индикация |
Как правило, стрелочные приборы измерительного механизма измеряют величину U действующего.
Помимо измерения действующего значения разработаны приборы для получения амплитуды постоянной составляющей напряжения. Как правило это электрические приборы, имеющие соответственный измерительный преобразователь. Механизм измерения максимального значения (амплитуды) в том, что необходимо запомнить величину максимума и сохранить ее в некотором интервале времени. Запоминающий элемент - цепь CR.
вх C R вых |
Данная схема называется пиковым детектором. Схема выпрямляет входной сигнал и величина выходного напряжения у выхода UMAX. В технике получить большую составляющую разряда конденсатора = 2,2RC сложно, поэтому чаще такую схему называют квазипиковой детектор. Эти схемы применяют для измерения максимальных значений переменного напряжения.
Пиковый (квазипиковый) вольтметр позволяет измерять максимум значений за интервал времени. Приборы используют для анализа сигналов в схемах защитной автоматики и анализа переходных процессов. Пиковый вольтметр используют для получения амплитудных значений пикового сигнала.
Вторая особенность в измерении напряжения в получении средних значений. Как правило эта величина интересна, когда сигнал однополярный, но не постоянный по величине. Для его получения необходим также преобразователь на основе выпрямителя. Но его постоянная соизмерима с временем измерения, которое может изменяться.
Эта энергия используется при исследовании цепей для характеристики сигналов: гармоники, шумы.
Время измерения усредняет величину U0, поэтому основная трудность это подбор времени измерения.
Амплитудные
пиковые
квазипиковые
максимальные
Конструктивно сам детектор часто выполняют в выносном делителе. Среднее значение напряжения на интервале также измеряют электронным вольтметром, у которого постоянная интегрирования подбирается близкой к периоду следования сигнала. Наибольшей точностью при измерении U обеспечивают цифровые вольтметры, поэтому стремятся применить их во всех возможных ситуациях.
ИЗМЕРЕНИЕ МОЩНОСТИ
Общие сведения по измерению мощности.
Мощность в цепях постоянного и переменного тока используют для характеристики величины переносимой энергии.
U(t) I(t) не могут характеризовать энергию P(t)=U(t)I(t). Произведение ни отчем не говорит. Физически за ним нет ни какой величины. Величина энергии через мощность измеряется ореннтируясь на период следования. Для постоянного тока величина не изменяется поэтому мощность измеряется как произведение, часто интервал времени не оговаривают. Значение мощности как и значение напряжения зависит от формы электронного сигнала.
Мощность измеряется как приборами непосредственной оценки,так и косвенными методами. Приборы для измерениямощьности называются ваттметры.
Обязательно необходимо подчеркнуть, что в электрической цепи рассматривается как активная мощность ,так и реактивная.
1. Составляющая: энергии ,передаваемая от источника к приемнику.
2. Составляющая:, пропорциональная синусу угла сдвига фазы и учитывает обратную волну энергии, существующей в электрической цепи.
Приборы для измерения мощности, как правело фиксируют активную составляющую.
Косвенные методы достаточно разнообразны: от использования амперметров и вольтметров действующих значений до осциллографа.
Величину активной мощности можно определять и через количество электричества, через нагревательные элементы. Импульсные сигналы так же характеризуют величину мощности.
Различают два значения: Ри -мощность импульса и Рср - усредненная мощность на интервале периода. Импульсная мощность
определяется как U(t)
0,5 tи
tи
Р =1/tи Ui(dt)
o Т t
Приборы регистрируют, как правило, среднее значение. Мощность импульса можно только пересчитать через скважность. Помимо Ватт мощность измеряется в децибеллах (дб), это относительная величина показывает превышение уровня мощности над единичным значением по логарифмической шкале.
это отчетный уровень (нулевой )
a (дб)=10lg(P/Po) применяемый обычно = 1 Вт или мВт.
Для его измерения используют активную нагрузку R=600 Ом.
Электрические ваттметры имеют две шкалы : одна в ваттах другая в децибелах.
ИЗМЕРЕНИЕ МОЩНОСТИ С ПОМОЩЬЮ ОСЦИЛЛОГРАФА.
Оцениваются сигналы сложной формы. Суть измерения интегрирования произведения UI по периоду T.
U(t) Zизм.
Т
|
t
Осциллограф на экране покажет форму напряжения, которая переносится на носитель.
Для получения формы тока в цепи последовательно с нагревом включенным измерительный резистор его величина 10 Ом.
Падения напряжения на нем пропорционально току текущему в цепи. Получили значения тока, мощность определяется по формуле
Т
Рф= Uidt
о
С помощью осциллографа оценивается мощность сигналов помех, накладываемых на основное напряжение, в сети создаются помехи в виде коротких импульсов. Если помеха периодична то не сложно оценить амплитудное значение этой помехи.
Rн
При малом известном Rн определяется ток Imax. Соответственно Um Im=Pи Рср=Ри/q q- скважность
1. Длительность импульсов принимаем на уровне 0,5 считая его прямоугольным.
2. Нагрузку считаем активной.
3. Входное сопротивлением прибора на много больше номинального сопротивления. Rвх >>Rн
Непосредственное измерение
Измерение мощности в цепях постоянного тока промышленной частоты. В цепях постоянного тока используют приборы - ваттметры магнитоэлектрической системы и электродинамической системы.
В цепях переменного тока к электродинамической и ферродинамической системам также прибавляются электродинамические системы имея две катушки. Неподвижная катушка - катушка напряжения, подвижная катушка - катушка тока. Ток в цепи подвижной катушки оценивается сопротивлением нагрузки.
U
~ I Zн i=U/R
Параллельно цепи течет второй ток сдвинутый по фазе на угол . Угол сдвига фаз зависит от конструкции приборов (индуктивности)
a=КiUcosj.
Эта величина линейна, поэтому шкала ваттметра соответственно линейна. Поскольку индуктивность подвижной катушки реальна и составляет 3/10 мкГн. Используют комплексные элементы последовательно с катушкой напряжения включают корректирующий конденсатор. Его величина оценивается Ск=L/(Rн)2
~ Rн Cк Zн
Сдвиг по фазе между напряжением и током в цепи катушки напряжения вызывает погрешность называющей угловой погрешностью.
g=tgjsind
Ее величина пропорциональна tg и sin угол отставания б между током и напряжениям. Если изменить направления тока в одной из катушек, знак угла отклонения изменяется, поэтому вводят термин генераторного зажима обмоток прибора (*) определяют. При закарачивание этих зажимов стрелка отклоняется в правильном направлении. Как правело это зажимы токовой катушки. Увеличение измеряемой мощности можно достичь теми же способами, как при измерении тока и напряжения. Применением измерительных трансформаторов.
|