Акустические датчики температуры, их характеристики и схемы включения
При работе в экстремальных условиях (в диапазоне криогенных температур, при высоких уровнях радиации в ядерных реакторах и т.д.), а также при проведении измерений в замкнутом герметичном объеме, где невозможно разместить контактные датчики или использовать ИК детекторы, бывает очень сложно определять температуру. В таких случаях обычно применяют акустические датчики температуры, принцип действия которых основан на зависимости скорости звука от температуры среды, через которую он распространяется. Например, для сухого воздуха при нормальном атмосферном давлении эта зависимость имеет вид:
(2.1)
где v — скорость света, a T— абсолютная температура.
Акустический датчик температуры (рис. 2.1) состоит из трех компонентов: ультразвуковых передатчика и приемника, а также герметичной трубки, заполненной газом. Передатчик и приемник представляют собой керамические пьезоэлектрические пластины, акустически несвязанные с трубкой, что обеспечивает распространение звука преимущественно через газ внутри трубки. В качестве газа чаще всего используется сухой воздух. В альтернативной конструкции датчика передающий и принимающий кристаллы встраиваются внутрь замкнутой камеры с известным содержимым, температуру которого необходимо измерить. В случае, когда объем и масса внутренней среды поддерживаются постоянными, не требуется применения промежуточной трубки. В случаях когда без нее не обойтись, ее необходимо защищать от механических деформаций и потери герметичности при воздействии очень высоких температур. Подходящим материалом для трубки является инвар.
Рис. 2.1. Акустический термометр с ультразвуковым детектором
Тактовое устройство работает на низкой частоте (порядка 100 Гц). Его импульсы запускают передатчик и блокируют приемник. Передающий кристалл изгибается и тем самым запускает ультразвуковую волну, распространяющуюся вдоль трубки. На принимающий кристалл приходит сигнал разрешения, и он преобразует дошедшую до него акустическую волну в электрический сигнал, который усиливается и передается в схему управления. Блок управления по времени распространения волны вдоль трубки вычисляет скорость звука, по которой при помощи калибровочных коэффициентов, хранящихся в специальных таблицах, находится искомая температура. Альтернативный акустический детектор температуры реализован на основе одного пьезоэлектрического кристалла, попеременно работающего то приемником, то передатчиком. В этом случае пустой конец трубки заваривается. Ультразвуковые волны отражаются от заваренного конца трубки и возвращается обратно на кристалл, который к этому моменту времени переключается в режим приемника. Электронная интерфейсная схема преобразует полученные импульсы в сигнал, соответствующий температуре внутри трубки.
На основе поверхностных акустических волн (ПАВ) и плоскостных волн строятся миниатюрные датчики температуры. Их принцип действия базируется на температурной модуляции некоторых механических параметров времязадающих элементов электронных генераторов], что приводит к изменению их частоты. Фактически, такие интегральные акустические датчики являются прямыми преобразователями температуры в частоту. Типичная чувствительность таких датчиков лежит в пределах нескольких кГц на градус.