Моделирование средств измерений

Структурные элементы и схемы средств

Измерений

Построение и изучение СИ невозможно без математических моделей, адекватно описывающих те или иные их свойства и характеристики. В метрологии используется моделирование измерительных сигналов (см. гл. 10) и моделирование средств измерений.

Математическая модель СИ описывает взаимосвязь его показаний Y со значением измеряемой величины X, конструктивными параметрами а1, а2,..., aL и влияющими величинами z1, z2,...,zK: Y = F(x; a1, a2,... aL; z1, z2,...,zK).

Для построения математических моделей (ММ) СИ необходимо знать, как устроены СИ и каким образом происходит преобразование измерительных сигналов, т.е. нужно знать структуру СИ. Для сложных СИ, каковыми являются большинство современных приборов, анализ их составных частей и ММ является далеко не простой задачей. Для ее оптимального решения, а также для упрощения анализа процессов, протекающих в СИ, введены понятия структурной схемы и измерительных цепи, канала и тракта.

Измерительная цепь — совокупность элементов СИ, образующих непрерывный путь прохождения измерительного сигнала от входа до выхода и обеспечивающих осуществление всех его преобразований.

Измерительный канал — это измерительная цепь, образованная последовательным соединением СИ и других технических устройств, предназначенная для измерения одной величины и имеющая нормированные метрологические характеристики.

Измерительный тракт — совокупность измерительных каналов, предназначенных для измерения определенной величины и имеющих одинаковые метрологические характеристики.

Структурная схема — условное обозначение измерительной цепи (канала или тракта) СИ с указанием преобразуемых величин. Эта схема определяет основные структурные блоки СИ, их назначение и взаимосвязи.

Основной предпосылкой, использованной при введении этих понятий, было обоснованное допущение о том, что каждое преобразование сигнала происходит в отдельном звене или блоке. Структурные схемы состоят из соединенных определенным образом структурных элементов (блоков), каждый из которых выполняет одну из ряда функций, связанных с измерением. Свойства структурных элементов или их совокупностей описываются с помощью соответствующих уравнений, известных из физики, электротехники, электроники и других технических наук.

Основной характеристикой структурного элемента является его функция (уравнение) преобразования Y = f[X, Kj, Zi] — уравнение, связывающее между собой входной X и выходной Y сигналы элемента, его параметры Kj и в ряде случаев внешние влияющие величины Zi. Функция преобразования структурного блока является его математической моделью. Ее вид зависит от того, насколько полно элемент необходимо описать, и какие его свойства являются для исследователя наиболее важными. Например, ММ идеального усилителя может быть записана в виде uвых(t) = kuвх(t), где k — коэффициент усиления, являющийся постоянным параметром усилителя. Если необходимо учесть напряжение смещения и0 на его выходе, модель запишется в виде uвых(t) = kuвх(t) + u0 . Процесс уточнения модели усилителя можно продолжить и дальше. Например, учесть его фазочастотные характеристики, влияние внешней температуры и т.д.

Структурные элементы могут быть классифицированы по ряду признаков. По типу выходного сигнала они разделяются на активные, генерирующие физические величины — носители энергии (например, аккумуляторы, усилители сигналов разного рода, источники света, излучения и др.), и пассивные, свойства которых зависят от состояния материи и выражаются физическими величинами, не являющимися носителями энергии (например, электрические сопротивления, емкости, индуктивности, оптические элементы — призмы, зеркала и др.).

По виду связи между входной и выходной величинами структурные блоки делятся на линейные и нелинейные. Линейными называются блоки, передаточные функции которых удовлетворяют условиям аддитивности f[X1(t) + X2(t)] = f[X1(t)] + f[X2(t)] и однородности f[CX(t)] = Cf[X(t)]. Параметры линейных блоков не зависят от параметров входного сигнала. Это наиболее простой и удобный для анализа тип блоков, поэтому для решения измерительной задачи по возмо ::ности следует выбирать линейные элементы. Примером линейного блока является идеальный усилитель.

Для нелинейных блоков связь между входным и выходным сигналами описывается функцией f, не удовлетворяющей приведенным выше условиям. Эти блоки делятся на квазилинейные и функциональные. Квазилинейные блоки характеризуются незначительной нелинейностью и считаются линейными при изменении входной и выходной величин в определенных диапазонах. Функциональным блокам присуща значительная нелинейность, которая учитывается построением соответствующей нелинейной математической модели.

В зависимости от динамических свойств структурные блоки делятся на статические и динамические. В статических блоках взаимосвязь между выходной и входной величинами не зависит от скорости изменения входного сигнала и его производных более высоких порядков. Если такую зависимость необходимо учитывать, то данный структурный блок следует считать динамическим. Различают динамические блоки первого, второго и высших порядков. Характеристики динамических блоков первого и второго порядков рассмотрены в разд. 11.3.

Структурные блоки также классифицируются по функции, выполняемой в СИ. По этому признаку они делятся на усилители различных видов, делители, дифференциаторы, интеграторы, коммутаторы, ключи, АЦП, ЦАП, фильтры и др. Кроме аналоговых структурных элементов существует большое число цифровых элементов, используемых при построении СИ. К ним относятся логические элементы, триггеры, регистры, счетчики, шифраторы и дешифраторы, мультиплексоры, компараторы кодов и др. Их Построение, свойства и применение рассматриваются в многочисленной специальной литературе, например [93].

Чрезвычайно важным цифровым устройством, все больше и больше применяемым в СИ, является микропроцессор — полупроводниковый прибор, осуществляющий автоматическую обработку цифровой информации в соответствии с заданной программой и выполненный в виде одной'или нескольких интегральных микросхем. Миниатюрные размеры и незначительная масса, малое потребление энергии позволяют включать его непосредственно в электрическую схему измерительного прибора. В СИ он выполняет функции приема, обработки и передачи информации, а также управления работой их составных частей. Вопросы применения микропроцессоров в измерительной технике детально рассмотрены в [71, 94].

На структурных схемах элементы изображаются в виде прямоугольников, внутри которых написано или каким-то образом условно обозначено их название. Кроме того, на схемах обязательно должно быть показано направление распространения измерительной информации, т. е. обозначены входы и выходы структурных элементов. Часто приводят поясняющие надписи, временные зависимости сигналов в характерных точках, таблицы и пр.

Пример 11.5. Структурная схема устройства для измерения температуры при помощи термопары показана на рис. 11.21. Термопара (ТП) помещается в объем, где измеряется температура Т. Она генерирует на своем выходе термо ЭДС е1(Т) = kTТ, где kT — коэффициент передачи ТП. Эта ЭДС усиливается усилителем (У) до значения е2(Т) = kye1(T) = kykTT, где ky — коэффициент усиления усилителя. Сигнал е2(Т) воздействует на регистрирующее устройство (РУ), на выходе которого фиксируются показания N(T), пропорциональные измеряемой температуре Т:

Моделирование средств измерений - student2.ru (11.9)

где kpy — коэффициент передачи регистрирующего устройства. Данное уравнение является уравнением преобразования рассматриваемого средства измерений.

Моделирование средств измерений - student2.ru

Рис. 11.21. Структурная схема термоэлектрического термометра

Структурные схемы СИ очень разнообразны. Однако в зависимости от соединения элементов структурной схемы различают два oсновных их вида: прямого и уравновешивающего (компенсационного) преобразования измерительного сигнала. Они существенно различаются по составу результирующей погрешности измерений и ее зависимости от погрешностей отдельных элементов структурной схемы [92].

11.7.2. Структурная схема прямого преобразования

Отличительная черта СИ, имеющего структурную схему прямого преобразования (рис. 11.22), состоит в том, что все преобразования Измерительного сигнала производятся в прямом направлении. Схема состоит из n последовательно соединенных блоков.

Моделирование средств измерений - student2.ru

Рис. 11.22. Структурная схема прямого преобразования

На схеме через К1, К.,, ..., Кn обозначены коэффициенты преобразования блоков. Каждый i-й коэффициент определяется по формуле К = dUi/dUi-1, где

Ui-1 и Ui — входной и выходной сигналы i-го блока.

Входной сигнал Uвх, несущий информацию об измеряемой величине, последовательно преобразуется в промежуточные сигналы U1, U2,..., Un-1 и в выходной сигнал Uвыx. В общем случае каждый из них является переменным во времени и может быть представлен в виде суммы гармонических составляющих. В связи с этим коэффициент Кi должен выражаться комплексным числом, а анализ структурных схем проводиться с использованием теории функций комплексного переменного. Однако для простоты рассмотрения будем считать, что информативным параметром сигнала является только его амплитуда (это чаще всего и бывает на практике). Тогда коэффициенты преобразования выразятся вещественными числами. Предположим также, что коэффициенты преобразования не зависят от уровня сигнала, т.е. звенья считаются линейными: К( = const.

Первоначально считая, что все помехи AUoi (см. рис. 11.22) равны нулю, получим уравнение преобразования СИ, имеющего структурную схему прямого преобразования:

Моделирование средств измерений - student2.ru , (11.10)

где К — коэффициент преобразования СИ.

На процесс измерения будут оказывать влияние изменения и нестабильность коэффициентов преобразования DКi, а также дрейфы нуля, помехи и наводки, которые в сумме можно описать сигналами DU0i, складываемыми с выходными сигналами каждого блока. Абсолютная погрешность DUвых измерения выходной величины, обусловленная нестабильностью коэффициента преобразования, может быть рассчитана как погрешность косвенного измерения с учетом выражения (11.10):

Моделирование средств измерений - student2.ru

Как видно из этого уравнения, погрешность DUвых является мультипликативной, т.е. зависит от уровня измеряемого сигнала. Относительная мультипликативная погрешность складывается из относительных погрешностей структурных элементов:

Моделирование средств измерений - student2.ru

где dш = DКii — относительная нестабильность коэффициента преобразования i-го блока; DК/К - относительная нестабильность коэффициента преобразования СИ.

Рассмотрим погрешность, обусловленную дрейфом нуля и наводками. Дрейф нуля — это изменение сигнала на выходе блока, не связанное с изменением входного сигнала. Он, как правило, определяется при входном сигнале, равном нулю. Дрейф нуля приводит к смещению передаточной функции 1-го элемента (рис. 11.23,а). Результирующее действие сигналов DU0i приводит к появлению дополнительного выходного сигнала

Моделирование средств измерений - student2.ru

Эта погрешность приведена к выходу СВ и по своей сути является аддитивной.

Моделирование средств измерений - student2.ru

Рис. 11.23. Функции преобразования блоков с дрейфом нуля (а)

и порогом чувствительности (б)

Таким образом, как следует из двух последних уравнений, в СИ, имеющем структурную схему прямого преобразования, происходит суммирование погрешностей, вносимых отдельными блоками. Для достижения высокой точности прибора требуется высокая стабильность параметров и характеристик каждого из блоков. Все это затрудняет реализацию высокоточных СИ по схеме прямого преобразования.

11.7.3. Уравновешивающее преобразование

Особенность уравновешивающего или, как еще говорят, компенсационного преобразования состоит в том, что выходная величина средства измерений Uвых (рис. 11.24) подвергается обратному преобразованию в величину U'm, однородную с входной величиной DU. Следовательно, используется отрицательная обратная связь.

Средства измерений, имеющие такую структуру, могут работать в двух режимах: неполного уравновешивания, когда сигнал рассогласования DU = Uвх - U'm ¹ О, и полного уравновешивания, когда ди = О. Рассмотрим сначала первый режим.

Цепь прямого преобразования

Моделирование средств измерений - student2.ru

Цепь обратного преобразования

Рис. 11.24. Схема уравновешивающего преобразования

Для вывода уравнения преобразования Uвых = j(Uвх) будем считать справедливыми те упрощающие предположения, которые были приняты при анализе схемы прямого преобразования. При отсутствии помех сигнал рассогласования DU поступает на вход измерительной цепи прямого преобразования. Ее выходной сигнал

Моделирование средств измерений - student2.ru

где Ki — коэффициент преобразования i-го структурного элемента цепи прямого преобразования, является входным для цепи обратного преобразования. Ее выходное напряжение

Моделирование средств измерений - student2.ru

где bi — коэффициент преобразования i-го структурного элемента цепи обратного преобразования.

Коэффициент преобразования СИ с учетом двух последних уравнений имеет вид

Моделирование средств измерений - student2.ru

а уравнение преобразования соответственно

Моделирование средств измерений - student2.ru (11.11)

Следовательно, выходной сигнал зависит от коэффициентов преобразования цепей прямого и обратного преобразования. При |ЗК»1 выходное напряжение Uвых » Uвых/b, цепь прямого преобразования практически не влияет на работу прибора, поэтому нестабильность коэффициентов преобразования Кi не вызывает погрешности измерения.

Относительная мультипликативная погрешность, обусловленная нестабильностью коэффициентов преобразования К и b, находится из уравнения (11.11):

Моделирование средств измерений - student2.ru

где DК, Db — суммарные погрешности, обусловленные нестабильностью коэффициентов К и b. При bК >> 1 погрешность dUвых(K) от нестабильности коэффициентов преобразования прямой цепи уменьшается в (1 + bК) раз. Погрешность dUвых(b), обусловленная нестабильностью коэффициентов преобразования цепи обратной связи, при этих условиях почти полностью входит в суммарную погрешность. Следовательно, в прямой цепи можно использовать активные нестабильные преобразователи, например усилители, но при этом необходимо выполнять условие bК >> 1. Коэффициент обратного преобразования b, наоборот, должен иметь высокую стабильность во времени.

Аддитивная погрешность, обусловленная дрейфом нуля, наводками, порогом чувствительности звеньев и другими аналогичными причинами, моделируется путем введения в структурную схему (рис. 11,24) дополнительных сигналов AU01, AU02, …, AU0n, DU'01, DU'02,..., DU'0k. Абсолютная аддитивная погрешность, приведенная к входу СИ,

Моделирование средств измерений - student2.ru

В режиме полного уравновешивания рассогласование DU=U—U'm = 0. Это возможно, если в цепи прямого преобразования имеется интегрирующий элемент с функцией преобразования вида

Моделирование средств измерений - student2.ru

например электродвигатель, интегратор, выполненный на операционном усилителе.

Уравнение преобразования СИ для этого случая имеет вид Uвых = Uвx/b. Коэффициент преобразования полностью определяется параметрами цепи обратной связи и не зависит от параметров цепи прямого преобразования.

Мультипликативная относительная погрешность, связанная с нестабильностью коэффициентов преобразования блоков bi,

Моделирование средств измерений - student2.ru

зависит только от свойств цепи обратной связи.

Аддитивная погрешность схем с полным уравновешиванием почти целиком обуславливается порогом чувствительности звеньев DUn — минимальным сигналом на входе, способным вызвать сигнал на выходе (см. рис. 11.23, б). При входном сигнале меньше DUn сигнал на выходе не появляется. Следовательно, уравновешивание схемы наступает при U—U'm= ± DUn. При этом играет роль порог чувствительности звеньев в цепи прямого преобразования до интегрирующего звена включительно.

Приведенная к входу абсолютная аддитивная погрешность

Моделирование средств измерений - student2.ru

где DU0i - порог чувствительности интегрирующего звена. Для уменьшения погрешности, обусловленной порогом чувствительности звеньев, следует увеличивать коэффициенты преобразования звеньев прямой цепи. В приведенных формулах фигурирует суммарная погрешность — сумма случайной и систематической составляющих.

Схемы СИ зачастую могут быть комбинированными, т.е. содержать цепь прямого преобразования, звенья которой охвачены отрицательной обратной связью. Следует отметить, что принцип построения структурной схемы влияет на многие параметры СИ, такие как входные и выходные сопротивления, динамические и другие характеристики.

Наши рекомендации