Глава 1. предмет и задачи метрологии

Глава 1. ПРЕДМЕТ И ЗАДАЧИ МЕТРОЛОГИИ

Предмет метрологии

Общепринятое определение метрологии дано в ГОСТ 16263—70 "ГСИ. Метрология. Термины и определения": метрология — наука об измерениях, методах, средствах обеспечения их единства и способах достижения требуемой точности. Греческое слово "метрология" образовано от слов "метрон" — мера и "логос" — учение.

Метрология делится на три самостоятельных и взаимно дополняющих раздела, основным из которых является "Теоретическая метрология". В нем излагаются общие вопросы теории измерений. Раздел "Прикладная метрология" посвящен изучению вопросов практического применения в различных сферах деятельности результатов теоретических исследований. В заключительном разделе "Законодательная метрология" рассматриваются комплексы взаимосвязанных и взаимообусловленных общих правил, требований и норм, а также другие вопросы, нуждающиеся в регламентации и контроле со стороны государства, направленные на обеспечение единства измерений и единообразия средств измерений (СИ).

Предметом метрологии является извлечение количественной информации о свойствах объектов и процессов с заданной точностью и достоверностью. Средства метрологии — это совокупность средств измерений и метрологических стандартов, обеспечивающих их рациональное использование.

Академик Б.М. Кедров предложил [18, 19] так называемый "треугольник наук", в "вершинах" которого находятся естественные, социальные и философские науки. По этой классификации метрология попадает на сторону "естественные — социальные науки". Это связано с тем, что социальная значимость результатов, получаемых метрологией, очень велика. Например, отрицательные последствия от недостоверных результатов измерений в отдельных случаях могут быть катастрофическими. Правомерно и помещение метрологии на стороне "естественные — философские науки". Это обусловлено значением метрологии для теории познания.

Говоря о "месте" любой науки в системе наук, Б.М. Кедров указывает [19]: "Место в системе наук выражает собой, во-первых, совокупность всех связей и отношений между данной наукой и непосредственно соприкасающимися с ней науками, а через них и с более отдаленными от нее, следовательно, со всей суммой человеческих знаний; это отвечает рассмотрению вопроса с его структурной стороны; во-вторых, определенную ступень развития научного познания, отражающую соответствующую ступень развития самого внешнего мира, а тем самым наличие переходов между данной наукой и непосредственно примыкающими к ней в общем ряду наук; это отвечает рассмотрению вопроса с его исторической или генетической стороны". Без измерений не может обойтись ни одна наука, поэтому метрология как наука об измерениях находится в тесной связи со всеми другими науками.

Основное понятие метрологии — измерение. Согласно ГОСТ 16263—70, измерение — это нахождение значения физической величины (ФВ) опытным путем с помощью специальных технических средств. Значимость измерений выражается в трех аспектах: философском, научном и техническом.

Философский аспект состоит в том, что измерения являются важнейшим универсальным методом познания физических явлений и процессов. В этом смысле метрология как наука об измерениях занимает особое место среди остальных наук. Возможность измерения обуславливается предварительным изучением заданного свойства объекта измерений, построением абстрактных моделей как самого свойства, так и его носителя — объекта измерения в целом. Поэтому место измерения определяется не среди первичных (теоретических или эмпирических) методов познания, а среди вторичных (квантитативных), обеспечивающих достоверность измерения. С помощью вторичных познавательных процедур решаются задачи формирования данных (фиксации результатов познания). Измерение с этой точки зрения представляет собой метод кодирования сведений, получаемых с помощью различных методов познания, т.е. заключительную стадию процесса познания, связанную с регистрацией получаемой информации [20].

Научный аспект измерений состоит в том, что с их помощью в науке осуществляется связь теории и практики. Без измерений невозможна проверка научных гипотез и соответственно развитие науки.

Измерения обеспечивают получение количественной информации об объекте управления или контроля, без которой невозможно точное воспроизведение всех заданных условий технического процесса, обеспечение высокого качества изделий и эффективного управления объектом. Все это составляет технический аспект измерений.

И передача их размеров

Поверочные схемы

Обеспечение правильной передачи размера единиц ФВ во всех звеньях метрологической цепи осуществляется посредством поверочных схем. Поверочная схема — это нормативный документ, который устанавливает соподчинение средств измерений, участвующих в передаче размера единицы от эталона к рабочим СИ с указанием методов и погрешности, и утвержден в установленном порядке. Основные положения о поверочных схема приведены в ГОСТ 8.061-80 "ГСИ. Поверочные схемы. Содержание и построение". Поверочные схемы делятся на государственные, ведомственные и локальные.

• Государственная поверочная схема распространяется на все СИ данной ФВ, имеющиеся в стране. Она разрабатывается в виде государственного стандарта, состоящего из чертежа поверочной схемы и текстовой части, содержащей пояснения к чертежу.

• Ведомственная поверочная схема распространяется на СИ данной ФВ, подлежащие ведомственной поверке.

• Локальная поверочная схема распространяется на СИ данной ФВ, подлежащие поверке в отдельном органе метрологической службы.

Ведомственные поверочные схемы не должны противоречить государственным поверочным схемам для СИ одних и тех же ФВ. Они могут быть составлены при отсутствии государственной поверочной схемы. В них допускается указывать конкретные типы (экземпляры) СИ. Ведомственная и локальная поверочные схемы оформляют в виде чертежа, элементы которого приведены на рис. 3.1.

глава 1. предмет и задачи метрологии - student2.ru

Рис. 3.1. Элементы графического изображения поверочных схем:

передача размера: а) от эталона 1 к объекту 5 методом 3; б) от эталона 1 к объектам поверки 5 и 6 методом 3; в) от эталона 1 к объекту поверки 5 методом 3 или 4; г) от эталона 1 к объекту поверки 5 методом 3 и объекту поверки 6 методом 4

Поверочная схема устанавливает передачу размера единиц одной или нескольких взаимосвязанных величин. Она должна включать не менее двух ступеней передачи размера. Поверочную схему для СИ одной и той же величины, существенно отличающихся по диапазонам измерений, условиям применения и методам поверки, а также для СИ нескольких ФВ допускается подразделять на части. На чертежах поверочной схемы должны быть указаны:

• наименования СИ и методов поверки;

• номинальные значения ФВ или их диапазоны;

• допускаемые значения погрешностей СИ;

• допускаемые значения погрешностей методов поверки. Правила расчета параметров поверочных схем и оформления чертежей поверочных схем приведены в ГОСТ 8.061-80 "ГСИ. Поверочные схемы. Содержание и построение" и в рекомендациях МИ 83—76 "Методика определения параметров поверочных схем".

Контрольные вопросы

1. Сформулируйте определение единицы физической величины. Приведите примеры единиц физических величин, относящихся к механике, магнетизму и оптике.

2. Что такое размерность физической величины? Запишите размерность следующих физических величин: паскаля, генри, ома, фарады и вольта.

3. Дайте определения системы физических величин и системы единиц физических величин. Приведите примеры основных и производных физических величин и единиц?

4. Сформулируйте основные принципы построения систем единиц физических величин.

5. Назовите производные единицы системы СИ, имеющие специальное название.

6. Какие внесистемные единицы допущены к применению наравне с единицами системы СИ?

7. Назовите приведенные значения физических величин, используя кратные и дольные приставки: 5,3×1013 Ом; 10,4×1013 Гц; 2,56×107 Па; 4,67×104 Ом; 0,067 м; 0,0098 с; 7,65×10-3 с; 6,34×10-6 Ф; 45,6×10-9 с; 12,3×10-13 Ф.

8. В чем заключается единство измерений?

9. Что такое эталон единицы физической величины? Какие типы эталонов вам известны?

10. Что такое поверочная схема и для чего она предназначена? Какие существуют виды поверочных схем?

11. Что такое поверка средств измерений и какими способами она может проводиться?

12. Для чего используются стандартные образцы? Назовите их метрологические характеристики. Приведите пример стандартных образцов.

13. Расскажите о государственных эталонах основных единиц системы СИ. Проанализируйте каждый из них с точки зрения неизменности во времени, воспроизводимости и неуничтожимости.

Глава 4. ОСНОВНЫЕ ПОНЯТИЯ ТЕОРИИ

ПОГРЕШНОСТЕЙ

Классификация погрешностей

Качество средств и результатов измерений принято характеризовать, указывая их погрешности. Введение понятия "погрешность" требует определения и четкого разграничения трех понятий: истинного и действительного значений измеряемой физической величины и результата измерения. Истинное значение физической величины — это значение, идеальным образом отражающее свойство данного объекта как в количественном, так и в качественном отношении. Оно не зависит от средств нашего познания и является той абсолютной истиной, к которой мы стремимся, пытаясь выразить ее в виде числовых значений. На практике это абстрактное понятие приходится заменять понятием "действительное значение". Действительное значение физической величины. — значение, найденное экспериментально и настолько приближающееся к истинному, что для данной цели оно может быть использовано вместо него. Результат измерения представляет собой приближенную оценку истинного значения величины, найденную путем измерения.

Понятие "погрешность" — одно из центральных в метрологии, где используются понятия "погрешность результата измерения" и "погрешность средства измерения". Погрешность результата измерения — это разница между результатом измерения X и истинным (или действительным) значением Q измеряемой величины:

глава 1. предмет и задачи метрологии - student2.ru (4.1)

Она указывает границы неопределенности значения измеряемой величины. Погрешность средства измерения — разность между показанием СИ и истинным (действительным) значением измеряемой ФВ. Она характеризует точность результатов измерений, проводимых данным средством.

Эти два понятия во многом близки друг к другу и классифицируются по одинаковым признакам.

По характеру проявления погрешности делятся на случайные, систематические, прогрессирующие и грубые (промахи).

Заметим, что из приведенного выше определения погрешности никак не следует, что она должна состоять из каких-либо составляющих. Деление погрешности на составляющие было введено для удобства обработки результатов измерений исходя из характера их проявления, В процессе формирования метрологии было обнаружено, что погрешность не является постоянной величиной. Путем элементарного анализа установлено, что одна ее часть проявляется как постоянная величина, а другая — изменяется непредсказуемо. Эти части назвали систематической и случайной погрешностями.

Как будет показано в разд. 4.3, изменение погрешности во времени представляет собой нестационарный случайный процесс. Разделение погрешности на систематическую, прогрессирующую и случайную составляющие представляет собой попытку описать различные участки частотного спектра этого широкополосного процесса: инфранизкочастотный, низкочастотный и высокочастотный.

Случайная погрешность — составляющая погрешности измерения, изменяющаяся случайным образом (по знаку и значению) в серии повторных измерений одного и того же размера ФВ, проведенных с одинаковой тщательностью в одних и тех же условиях. В появлении таких погрешностей (рис. 4.1) не наблюдается какой-либо закономерности, они обнаруживаются при повторных измерениях одной и той же величины в виде некоторого разброса получаемых результатов. Случайные погрешности неизбежны, неустранимы и всегда присутствуют в результате измерения. Описание случайных погрешностей возможно только на основе теории случайных процессов и математической статистики.

глава 1. предмет и задачи метрологии - student2.ru

Рис. 4.1 . Изменение случайной погрешности от измерения к измерению

В отличие от систематических случайные погрешности нельзя исключить из результатов измерений путем введения поправки, однако их можно существенно уменьшить путем увеличения числа наблюдений. Поэтому для получения результата, минимально отличающегося от истинного значения измеряемой величины, проводят многократные измерения требуемой величины с последующей математической обработкой экспериментальных данных.

Систематическая погрешность — составляющая погрешности измерения, остающаяся постоянной или закономерно меняющаяся при повторных измерениях одной и той же ФВ. Постоянная и переменная систематические погрешности показаны на рис. 4.2. Их отличительный признак заключается в том, что они могут быть предсказаны, обнаружены и благодаря этому почти полностью устранены введением соответствующей поправки.

Прогрессирующая (дрейфовая) погрешность — это непредсказуемая погрешность, медленно меняющаяся во времени. Впервые это понятие было введено в монографии М.Ф. Маликова "Основы метрологии" [17], изданной в 1949 г. Отличительные особенности прогрессирующих погрешностей:

• они могут быть скорректированы поправками только в данный момент времени, а далее вновь непредсказуемо изменяются;

• изменения прогрессирующих погрешностей во времени — нестационарный случайный процесс, и поэтому в рамках хорошо разработанной теории стационарных случайных процессов они могут быть описаны лишь с известными оговорками.

Прогрессирующая погрешность — это понятие, специфичное для нестационарного случайного процесса изменения погрешности во времени, оно не может быть сведено к понятиям случайной и систематической погрешностей. Последние характерны лишь для стационарных случайных процессов. Прогрессирующая погрешность может возникнуть вследствие как непостоянства во времени текущего математического ожидания нестационарного случайного процесса, так и изменения во времени его дисперсии или формы закона распределения.

Грубая погрешность (промах) — это случайная погрешность результата отдельного наблюдения, входящего в ряд измерений, которая для данных условий резко отличается от остальных результатов этого ряда. Они, как правило, возникают из-за ошибок или неправильных действий оператора (его психофизиологического состояния, неверного отсчета, ошибок в записях или вычислениях, неправильного включения приборов или сбоев в их работе и др.). Возможной причиной возникновения промахов также могут быть кратковременные резкие изменения условий проведения измерений. Если промахи обнаруживаются в процессе измерений, то результаты, их содержащие, отбрасывают. Однако чаще всего промахи выявляют только при окончательной обработке результатов измерений с помощью специальных критериев, которые рассмотрены в гл. 7.

По способу выражения различают абсолютную, относительную и приведенную погрешности.

Абсолютная погрешность описывается формулой (4.1) и выражается в единицах измеряемой величины. Однако она не может в полной мере служить показателем точности измерений, так как одно и то же ее значение, например, Д = 0,05 мм при X = 100 мм соответствует достаточно высокой точности измерений, а при X — 1 мм — низкой. Поэтому и вводится понятие относительной погрешности. Относительная погрешность — это отношение абсолютной погрешности измерения к истинному значению измеряемой величины:

глава 1. предмет и задачи метрологии - student2.ru (4.2)

Эта наглядная характеристика точности результата измерения не годится для нормирования погрешности СИ, так как при изменении значений Q принимает различные значения вплоть до бесконечности при Q = 0. В связи с этим для указания и нормирования погрешности СИ используется еще одна разновидность погрешности — приведенная.

Приведенная погрешность — это относительная погрешность, в которой абсолютная погрешность СИ отнесена к условно принятому значению QN, постоянному во всем диапазоне измерений или его части:

глава 1. предмет и задачи метрологии - student2.ru (4.3)

Условно принятое значение QN называют нормирующим. Чаще всего за него принимают верхний предел измерений данного СИ, применительно к которым и используется главным образом понятие "приведенная погрешность".

В зависимости от места возникновения различают инструментальные, методические и субъективные погрешности.

Инструментальная погрешность обусловлена погрешностью применяемого СИ. Иногда эту погрешность называют аппаратурной.

Методическая погрешность измерения обусловлена:

• отличием принятой модели объекта измерения от модели, адекватно описывающей его свойство, которое определяется путем измерения;

• влиянием способов применения СИ. Это имеет место, например, при измерении напряжения вольтметром с конечным значением внутреннего сопротивления. В данном случае вольтметр шунтирует участок цепи, на котором измеряется напряжение, и оно оказывается меньше, чем было до присоединения вольтметра;

• влиянием алгоритмов (формул), по которым производятся вычисления результатов измерений;

• влиянием других факторов, не связанных со свойствами используемых средств измерения.

Отличительной особенностью методических погрешностей является то, что они не могут быть указаны в нормативно-технической документации на используемое СИ, поскольку от него не зависят, а должны определяться оператором в каждом конкретном случае. В связи с этим оператор должен четко различать фактически измеряемую им величину и величину, подлежащую измерению.

Субъективная (личная) погрешность измерения обусловлена погрешностью отсчета оператором показаний по шкалам СИ, диаграммам регистрирующих приборов. Они вызываются состоянием оператора, его положением во время работы, несовершенством органов чувств, эргономическими свойствами СИ. Характеристики личной погрешности определяют на основе нормированной номинальной цены деления шкалы измерительного прибора (или диаграммной бумаги регистрирующего прибора) с учетом способности "среднего оператора" к интерполяции в пределах деления шкалы.

По зависимости абсолютной погрешности от значений измеряемой величины различают погрешности (рис. 4.4):

глава 1. предмет и задачи метрологии - student2.ru

Рис. 4.4. Аддитивная (а), мультипликативная (б) и нелинейная (в)

погрешности

• аддитивные Dа, не зависящие от измеряемой величины;

• мультипликативные Dм, которые прямо пропорциональны измеряемой величине;

• нелинейные Dн, имеющие нелинейную зависимость от измеряемой величины.

Эти погрешности применяют в основном для описания метрологических характеристик СИ. Разделение погрешностей на аддитивные, мультипликативные и нелинейные весьма существенно при решении вопроса о нормировании и математическом описании погрешностей СИ.

Примеры аддитивных погрешностей — от постоянного груза на чашке весов, от неточной установки на нуль стрелки прибора перед измерением, от термо-ЭДС в цепях постоянного тока. Причинами возникновения мультипликативных погрешностей могут быть: изменение коэффициента усиления усилителя, изменение жесткости мембраны датчика манометра или пружины прибора, изменение опорного напряжения в цифровом вольтметре.

По влиянию внешних условий различают основную и дополнительную погрешности СИ. Основной называется погрешность СИ, определяемая в нормальных условиях его применения. Для каждого СИ в нормативно-технических документах оговариваются условия эксплуатации — совокупность влияющих величин (температура окружающей среды, влажность, давление, напряжение и частота питающей сети и др.), при которых нормируется его погрешность. Дополнительной называется погрешность СИ, возникающая вследствие отклонения какой-либо из влияющих величин.

В зависимости от влияния характера изменения измеряемых величин погрешности СИ делят на статические и динамические. Статическая погрешность — это погрешность СИ применяемого для измерения ФВ, принимаемой за неизменную. Динамической называется погрешность СИ, возникающая дополнительно при измерении переменной ФВ и обусловленная несоответствием его реакции на скорость (частоту) изменения измеряемого сигнала.

Классификация

В настоящее время, особенно после введения одного из основополагающих метрологических стандартов — ГОСТ 8.009-84 ТСИ. Нормируемые метрологические характеристики средств измерений", понятие "систематическая погрешность" несколько изменилось по отношению к определению, данному ГОСТ 16263-70 ТСИ. Метрология. Термины и определения". Систематическая погрешность считается специфической, "вырожденной" случайной величиной, обладающей некоторыми, но не всеми свойствами случайной величины, изучаемой в теории вероятностей и математической статистике. Свойства систематической погрешности, которые необходимо учитывать при объединении составляющих погрешности, отражаются такими же характеристиками, что и свойства "настоящих" случайных величин — дисперсией (СКО) и коэффициентом взаимной корреляции.

Систематическая погрешность представляет собой определенную функцию влияющих факторов, состав которых зависит от физических, конструктивных и технологических особенностей СИ, условий их применения, а также индивидуальных качеств наблюдателя. В метрологической практике при оценке систематических погрешностей должно учитываться влияние следующих основных факторов:

1. Объект измерения. Перед измерением он должен быть достаточно хорошо изучен с целью корректного выбора его модели. Чем полнее модель соответствует исследуемому объекту, тем точнее могут быть получены результаты измерения. Например, кривизна земной поверхности может не учитываться при измерении площади сельскохозяйственных угодий, так как она не вносит ощутимой погрешности, однако при измерении площади океанов ею пренебрегать уже нельзя.

2. Субъект измерения. Его вклад в погрешность измерения необходимо уменьшать путем подбора операторов высокой квалификации и соблюдения требований эргономики при разработке СИ.

3. Метод и средство измерений. Чрезвычайно важен их правильный выбор, который производится на основе априорной информации об объекте измерения. Чем больше априорной информации, тем точнее может быть проведено измерение. Основной вклад в систематическую погрешность вносит, как правило, методическая погрешность.

4. Условия измерения. Обеспечение и стабилизация нормальных условий являются необходимыми требованиями для минимизации дополнительной погрешности, которая по своей природе, как правило, является систематической.

Систематические погрешности принято классифицировать по двум признакам. По характеру изменения во времени они делятся на постоянные и переменные. Постоянными называются такие погрешности измерения, которые остаются неизменными в течение всей серии измерений. Например, погрешность от того, что неправильно установлен ноль стрелочного электроизмерительного прибора, погрешность от постоянного дополнительного веса на чашке весов и т.д. Переменными называются погрешности, изменяющиеся в процессе измерения. Они делятся на монотонно изменяющиеся, периодические и изменяющиеся по сложному закону. Если в процессе измерения систематическая погрешность монотонно возрастает или убывает, ее называют монотонно изменяющейся. Например, она имеет место при постепенном разряде батареи, питающей средство измерений. Периодической, называется погрешность, значение которой является периодической функцией времени. Примером может служить погрешность, обусловленная суточными колебаниями напряжения силовой питающей сети, температуры окружающей среды и др. Систематические погрешности могут изменяться и по более сложному закону, обусловленному какими-либо внешними причинами.

По причинам возникновения погрешности делятся на методические, инструментальные и личные (субъективные). Эти погрешности подробно рассмотрены в разд. 4.1.

Погрешностей

Присутствие случайных погрешностей в результатах измерений легко обнаруживается из-за их разброса относительно некоторого значения. Как уже отмечалось ранее, и результат измерения, и его погрешность с известными оговорками могут рассматриваться (см. разд. 4.2) как случайные величины.

Из теории вероятности известно, что наиболее универсальным способом описания случайных величин является отыскание их интегральных или дифференциальных функций распределения. Интегральной функцией распределения F(x) называют функцию, каждое значение которой для каждого х является вероятностью события, заключающегося в том, что случайная величина хi в i-м опыте принимает значение, меньшее х:

глава 1. предмет и задачи метрологии - student2.ru (6.1)

График интегральной функции распределения показан на рис. 6.1. Она имеет следующие свойства:

• неотрицательная, т.е. F(x) ³ 0;

• неубывающая, т.е. F(x2) ³ F(x1), если х2 ³ x1;

• диапазон ее изменения простирается от 0 до 1, т.е. F(- ¥) = 0; F(+ ¥) =1;

• вероятность нахождения случайной величины х в диапазоне от х1 до х2 Р(x1 < х < х2} = F(x2) - F(x1).

Более наглядным является описание свойств результатов измерений и случайных погрешностей с помощью дифференциальной функции распределения, иначе называемой плотностью распределения вероятностей р(х) = dF(x)/dx. Она всегда неотрицательна и подчиняется условию нормирования в виде:

глава 1. предмет и задачи метрологии - student2.ru

Учитывая взаимосвязь F(x) и р(х), легко показать, что вероятность попадания случайной величины в заданный интервал (х1; х2)

глава 1. предмет и задачи метрологии - student2.ru

Следовательно, рассмотренное выше условие нормирования означает, что вероятность попадания величины х в интервал [- ¥; + ¥] равна единице, т.е. представляет собой достоверное событие.

Из последнего уравнения следует, что вероятность попадания случайной величины х в заданный интервал (х12) равна площади, заключенной под кривой р(х) между абсциссами х1 и х2 (см. рис. 6.1). Поэтому по форме кривой плотности вероятности р(х) можно судить о том, какие значения случайной величины х наиболее вероятны, а какие наименее.

глава 1. предмет и задачи метрологии - student2.ru

Рис. 6.1. Интегральная (а) и дифференциальная (б)

функции распределения случайной величины

Результирующая погрешность зачастую складывается из ряда составляющих с различными плотностями распределения р1(х), р2(х),..., рn(х). В связи с этим возникает задача определения суммарного закона распределения погрешности. Для суммы независимых непрерывных случайных х1 и х2, имеющих распределения р1(х) и р2(х), он называется композицией и выражается интегралами свертки [48, 49]:

глава 1. предмет и задачи метрологии - student2.ru

Графическое определение композиции двух случайных независимых величин показано на рис. 6.2. Следует отметить, что масштаб всех графиков по вертикали произвольный, и должно выполняться условие: площадь, ограниченная кривой плотности вероятности, равна единице.

глава 1. предмет и задачи метрологии - student2.ru

Рис. 6.2. Суммирование законов распределений

Общие сведения

Использование на практике вероятностного подхода к оценке погрешностей результатов измерений прежде всего предполагает знание аналитической модели закона распределения рассматриваемой погрешности. Встречающиеся в метрологии распределения достаточно разнообразны. В качестве примера можно привести результаты исследований [4] 219 фактических распределений погрешностей, имеющих место при измерении электрических и неэлектрических величин разнообразными приборами. Установлено, что примерно 50% распределений принадлежат к классу экспоненциальных, 30% являются уплощенными, а остальные 20% — различными видами двухмодальных распределений.

Множество законов распределения случайных величин, используемых в метрологии, целесообразно классифицировать [4] следующим образом:

• трапецеидальные (плосковершинные) распределения;

• уплощеные (приблизительно плосковершинные) распределения;

• экспоненциальные распределения;

• семейство распределений Стьюдента;

• двухмодальные распределения.

Глава 7. ГРУБЫЕ ПОГРЕШНОСТИ

И МЕТОДЫ ИХ ИСКЛЮЧЕНИЯ

ИЗМЕРЕНИЙ

Равноточные измерения

Прямые многократные измерения делятся на равно- и неравноточные. Теоретические основы и методика объединения результатов неравноточных измерений подробно рассмотрены в [3]. Равно точными называются измерения, которые проводятся средствами измерений одинаковой точности по одной и той же методике при неизменных внешних условиях. При равноточных измерениях СКО результатов всех рядов измерений равны между собой.

Перед проведением обработки результатов измерений необходимо удостовериться в том, что данные из обрабатываемой выборки статистически подконтрольны, группируются вокруг одного и того же центра и имеют одинаковую дисперсию. Устойчивость изменений часто оценивают интуитивно на основе длительных наблюдений. Однако существуют математические методы решения поставленной задачи — так называемые методы проверки однородности [3].

Задача обработки результатов многократных измерений заключается в нахождении оценки измеряемой величины и доверительного интервала, в котором находится ее истинное значение.

Исходной информацией для обработки является ряд из n (n > 4) результатов измерений x1, х2, х.г,..., хn, из которых исключены известные систематические погрешности, — выборка. Число n зависит как от требований к точности получаемого результата, так и от реальной возможности выполнять повторные измерения.

Однократные измерения

Прямые многократные измерения в большей мере относятся к лабораторным измерениям. Для производственных процессов более характерны однократные измерения. Однократные прямые измерения являются самыми массовыми и проводятся, если: при измерении происходит разрушение объекта измерения, отсутствует возможность повторных измерений, имеет место экономическая целесообразность. Эти измерения возможны лишь при определенных условиях:

• объем априорной информации об объекте измерений такой, что модель объекта и определение измеряемой величины не вызывают сомнений;

• изучен метод измерения, его погрешности либо заранее устранены, либо оценены;

• средства измерений исправны, а их метрологические характеристики соответствуют установленным нормам.

За результат прямого однократного измерения принимается полученная величина. До измерения должна быть проведена априорная оценка составляющих погрешности с использованием всех доступных данных. При определении доверительных границ погрешности результата измерений доверительная вероятность принимается, как правило, равной 0,95.

Составляющими погрешности прямых однократных измерений являются:

• погрешности СИ, рассчитываемые по их метрологическим характеристикам;

• погрешность используемого метода измерений, определяемая на основе анализа в каждом конкретном случае;

• личная погрешность, вносимая конкретным оператором. Если последние две составляющие не превышают 15% погрешности СИ, то за погрешность результата однократного измерения принимают погрешность используемого СИ. Данная ситуация весьма часто имеет место на практике.

Косвенные измерения

Косвенные измерения — это измерения, при которых искомое значение Q находят на основании известной зависимости

глава 1. предмет и задачи метрологии - student2.ru (8.2)

где Q1, Q2,...,Qm— значения, полученные при прямых измерениях. По виду функциональной зависимости F они делятся на две основные группы — линейные и нелинейные. Для линейных косвенных измерений математический аппарат статистической обработки полученных результатов разработан детально. Обработка результатов косвенных измерений [57] производится, как правило, методами: основанными на раздельной обработке аргументов и их погрешностей; линеаризации; приведения; перебора.

Косвенные измерения при линейной зависимости между аргументами. Линейная функциональная зависимость является простейшей формой связи между измеряемой величиной и находимыми посредством прямых измерений аргументами. Она может быть выражена формулой

глава 1. предмет и задачи метрологии - student2.ru

где bi — постоянный коэффициент i-ro аргумента Qi; m — число аргументов. Погрешности линейных косвенных измерений оцениваются методом, основанным на раздельной обработке аргументов и их погрешностей.

Косвенные измерения при нелинейной зависимости между аргументами. Для обработки результатов измерений при нелинейных зависимостях между аргументами и некоррелированных погрешностях используется метод линеаризации. Он состоит в том, что нелинейная функция, связывающая измеряемую величину с аргументами, разлагается в ряд Тейлора:

глава 1. предмет и задачи метрологии - student2.ru (8.5)

Здесь глава 1. предмет и задачи метрологии - student2.ru — первая частная производная от функции f по аргументу Qi, вычисленная в точке Q̃1, Q̃2,...,Q̃m; DQ; — отклонение результата измерения аргумента Qi от его среднего арифметического; R̃ — остаточный член:

глава 1. предмет и задачи метрологии - student2.ru

Метод линеаризации применим, если остаточным членом можно пренебречь. Это возможно в том случае, если

глава 1. предмет и задачи метрологии - student2.ru

где S(Qi)— СКО случайной погрешности результата измерений аргумента Qi. При необходимости результаты косвенных измерений можно уточнить, используя члены ряда Тейлора более высокого порядка. Эти вопросы детально рассмотрены в [57]. Оценка результата определяется по формуле

глава 1. предмет и задачи метрологии - student2.ru (8.6)

Контрольные вопросы

1. Что такое вариационный ряд и интервалы группирования? Как определяется число интервалов группирования?

2. Что такое гистограмма, полигон и кумулятивная кривая?

3. Перечислите этапы обработки результатов прямых многократных измерений.

4. Для чего необходимо идентифицировать форму закона распределения результатов измерений? Расскажите, каким образом это делается.

5. Напишите алгоритм обработки результатов однократных измерений с точным оцениванием погрешностей.

6. Как обрабатываются результаты линейных косвенных измерений?

7. В чем состоит метод линеаризации и как он используется для обработки рез

Наши рекомендации