Общая характеристика измерения

Измерение есть нахождение значения физической величины опытным путем с применением технических средств, имеющих нормированные, метрологические свойства и называемых средствами измерений.

Номенклатура измеряемых величин при испытаниях ВРД достаточно разнообразна. Для определения этих величин используются различные принципы и методы измерений. При этом под принципом измерения подразумевается совокупность физических явлений, лежащих в основе данного измерения; метод измерения - совокупность приемов использования принципов и средств измерений.

В испытаниях ВРД применяются прямые и косвенные измерения. При прямых измерениях искомое значение величины находится непосредственно из опытных данных. При косвенных измерениях предварительно подвергаются прямым измерениям некоторые вспомогательные величины х1, х2, ..., хn, а значение искомой величины у определяется с помощью известной зависимости у=f(х1, х2, ..., хn). Например, определение скорости потока газа по измеренным значениям полного и статического давлений и температуры относится к косвенным измерениям.

Средства измерений подразделяются на меры, измерительные преобразователи, приборы, установки, системы и вспомогательные средства.

Меры - средства измерений, предназначенные для воспроизведения физической величины заданного размера.

Измерительные преобразователи - устройства, предназначенные для выработки сигнала измерительной информации, не поддающегося непосредственному восприятию наблюдателем, но имеющего удобную для передачи, обработки и хранения форму. Совокупность преобразовательных элементов, обеспечивающая необходимые преобразования сигнала измерительной информации, образует измерительную цепь средства измерения, или измерительный канал. В начале измерительной цепи находится первичный преобразователь, который непосредственно воспринимает воздействие измеряемой величины. В большинстве первичных преобразователей измеряемая величина преобразуется в электрический сигнал. Для усиления сигнала (без изменения его размерности или формы) предназначены масштабные преобразователи (усилители), а для преобразования его размерности или формы - промежуточные преобразователи. В случае необходимости передачи информации на значительные расстояния применяются передающие преобразователи.

Совокупность измерительных преобразователей, объединенных в один конструктивный узел, который непосредственно взаимодействует с экспериментальным объектом, называют также датчиком.

Измерительные приборы - средства измерений, обрабатывающие сигнал измерительной информации в форме, доступной для восприятия наблюдателем. В аналоговых приборах показания являются непрерывной функцией измеряемой величины, а в цифровых показания представлены в цифровой форме. По способу вывода показаний они подразделяются на показывающие, регистрирующие, самопишущие и печатающие.

Измерительные установки характеризуются тем, что входящие в них элементы сосредоточены в одном месте, а сигналы измерительной информации могут восприниматься наблюдателем.

В измерительных системах составляющие их элементы соединяются между собой каналами связи, а сигналы измерительной информации должны находиться в форме, удобной для автоматической обработки, передачи и использования в автоматизированных системах управления.

Сведения о значении измеряемой величины содержатся в сигналах измерительной информации. Сигнал может характеризоваться одним параметром (постоянное напряжение, давление рабочей жидкости) или несколькими (частота, фаза, амплитуда переменного тока). Для того чтобы сигнал содержал измерительную информацию, необходимо, чтобы хотя бы один из его параметров был функционально' связан с измеряемой величиной. Этот параметр сигнала называется информативным в отличие от остальных – неинформативных параметров.

Статической характеристикой средства измерения называется зависимость информативного параметра его выходного сигнала от информативного параметра входного сигнала при определенных значениях неинформативных параметров. Различают номинальную (типовую) статическую характеристику (называемую также функцией преобразования) и рабочую, описывающую свойства конкретного экземпляра средства измерения (градуировочная характеристика). Статические характеристики определяются при неизменных по времени значениях входного сигнала и могут выражаться формулой, графиком или таблицей.

Отношение изменения выходного сигнала Dl к вызвавшему его изменению Dх измеряемой величины называется чувствительностью средства измерения. Абсолютная чувствительность S=Dl/Dx; относительная – S0=Dl/(Dх/х). Если статическая характеристика линейна, то величина S будет постоянной во всем диапазоне измерений. В противном случае она будет изменяться и при каждом значении х будет равна производной l по х:

общая характеристика измерения - student2.ru

Важной характеристикой измерительных приборов является цена деления шкалы, или цена единицы наименьшего разряда цифрового кода, равная соответствующему изменению измеряемой величины.

Диапазон показаний измерительного прибора есть разность между значениями измеряемой величины, соответствующими конечному и начальному значениям шкалы (значениям кода). Диапазон измерений или рабочая часть шкалы - это область значений измеряемой величины, для которой погрешности измерений не превышают допустимых. Диапазон измерений ограничен верхним и нижним пределами измерений.

При измерении переменных по времени величин погрешность измерения будет зависеть от инерционных свойств средства измерения. Эти свойства описываются динамическими характеристиками, которые определяют зависимость информативного или какого-либо из неинформативных параметров выходного сигнала от изменяющихся по времени параметров входного сигнала.

Например, при изменении входного сигнала по гармоническому закону авх=Aвхsinwt выходной сигнал средства измерения также будет изменяться по гармоническому закону авых=Aвыхsin(wt+j). Амплитудно-частотной характеристикой называется изменение отношения: амплитуд в зависимости от круговой частоты; Aвых/Aвх=f(w); фазо-частотной характеристикой - изменение угла сдвига фаз j от значений w:

j=f( w).

Простейшими нормируемыми показателями, характеризующими инерционность средств измерений, являются полоса пропускаемых частот сигнала (диапазон изменения частоты, в пределах которого не происходит изменений отношения Aвых/Aвх) и время установления выходного сигнала (время выхода его на постоянный уровень при скачкообразном изменении сигнала на входе).

Динамические характеристики рассчитываются или определяются экспериментально. Они позволяют оценить возможность применения того или иного средства измерения в конкретных условиях.

ПОГРЕШНОСТИ ИЗМЕРЕНИЯ

В результате измерений значение измеряемой величины никогда не может быть определено абсолютно точно. Всегда результат измерения отличается от истинного значения измеряемой величины х на некоторую величину D, называемую погрешностью измерения.

Возникновение погрешностей связано с несовершенством методов и средств измерений, влиянием условий измерений и неправильных действий людей, выполняющих измерения. Конкретная причина той или иной погрешности далеко не всегда может быть установлена.

По характеру проявления погрешности можно подразделить на грубые, систематические и случайные.

Грубые погрешности (промахи, выпадающие точки) появляются из-за неисправности средств измерений, сбоев в их работе, отклонений в режиме работы экспериментальных объектов и т.д. Эти погрешности необходимо обнаружить и искаженные ими результаты исключить из рассмотрения.

Систематические погрешности характеризуются тем, что они или сохраняются постоянными, или изменяются по времени закономерным образом, или являются функциями определенных параметров (температуры, напряжения питания и т.д.).

Систематические погрешности можно подразделить на ряд групп в зависимости от вызывающих их причин.

Погрешности метода, или теоретические погрешности, обусловлены недостаточной разработкой теории измерений, недостаточной обоснованностью принимаемых при этом допущений, неправильным использованием средств измерений, влиянием их на работу экспериментального объекта и т.д.

Инструментальные погрешности возникают из-за недостатков конструкции (схемы) средств измерений или технологии их изготовления.

Дополнительные погрешности (погрешности внешних влияний) вызываются отличием рабочих условий эксплуатации средств измерений от номинальных (неправильная установка; влияние температуры или внешних магнитных и других полей; нестабильность источника питания и т.д.).

Динамические погрешности обусловлены инерционными свойствами средств измерений.

Личные погрешности связаны с индивидуальными особенностями и квалификацией наблюдателя. Личные погрешности исключаются при применении автоматизированных средств измерений с фиксацией результатов измерений на различных носителях информации.

В научно поставленном эксперименте систематические погрешности можно практически полностью исключить или по крайней мере существенно уменьшить путем строгого контроля условий работы при измерениях (термостатирование, экранирование, защита от вибраций, применение стабилизированных источников питания), градуировки и внесения поправок, надлежащей организации измерений и их обработки.

Результат измерения, содержащий систематическую погрешность q, называется неисправленным х' в отличие от исправленного результата х, систематическая погрешность из которого исключена путем введения поправки q: х=х'+q. Поправка равна систематической погрешности и обратна ей по знаку: q=-q.

Поправки могут определяться при градуировке средств измерений, когда измеряемая величина воспроизводится образцовой мерой и ее значение известно, или в результате расчета на основе специальных исследований физических процессов, сопутствующих измерениям.

Случайные погрешности вызываются неконтролируемыми изменениями условий измерений и параметров средств измерений. Если в опытах отсутствует систематическая погрешность, то данные большого числа отдельных измерений (наблюдений) будут случайным образом изменяться в некотором интервале около истинного значения измеряемой величины. Поскольку поправки на систематические погрешности определяются с ограниченной точностью, то они содержат и некоторую случайную погрешность, исключить которую невозможно. Эта погрешность называется неисключенным остатком систематической погрешности.

Таким образом, суммарная случайная погрешность состоит из собственно случайной погрешности и не исключенного остатка систематической погрешности,

Случайная погрешность представляет собой непрерывную случайную величину, т.е. такую величину, которая может принимать в зависимости от случайного исхода наблюдения (опыта) любые значения с определенными вероятностями. Случайная величина наиболее полно характеризуется интегральной F(x) или дифференциальной р(х) функциями распределения. Последняя называется также плотностью вероятностей, или законом (функцией) распределения. Значение функции F(x) при некотором заданном значении х равно вероятности того, что случайная величина x примет значение, меньшее или равное х: F(x)=Р(x£x). Плотность вероятностей есть производная функции F(x): р(х)=F'(x). Обратная зависимость имеет вид общая характеристика измерения - student2.ru . Характерный вид графиков функций F(x) и р(х) представлен на рис. 3.1. График функции р(х) называется также кривой распределения.

общая характеристика измерения - student2.ru

Рис. 3.1. Характерный вид графиков интегральной (а) и дифференциальной (б) функций распределения (заштрихована площадь, равная g=Р(х1£х£х2)

На практике удобнее пользоваться не функциями распределения, а некоторыми числовыми характеристиками, дающими достаточные сведения о свойствах и распределении случайной величины. Наиболее важными из них являются математическое ожидание М[х] и дисперсия s2[х].

Математическое ожидание характеризует расположение центра распределения, вокруг которого группируются возможные значения случайной величины. Оно определяется интегралом общая характеристика измерения - student2.ru .

Дисперсия s2[х] характеризует рассеяние случайной величины вокруг ее математического ожидания. Дисперсией называется математическое ожидание (т.е. среднее значение) квадрата отклонения случайной величины от М[х]:

общая характеристика измерения - student2.ru

Корень квадратный да дисперсии - величина s[х] - имеет ту же размерность, что и сама случайная величина, и называется средним квадратическим отклонением случайной величины.

Конкретные значения указанных характеристик случайных величин зависят от вида функции распределения.

В теории вероятностей, математической статистике, метрологии важную роль играет так называемое нормальное, или Гауссово распределение случайной величин. Плотность вероятностей этого распределения описывается функцией

общая характеристика измерения - student2.ru

В теории вероятностей доказано (центральная предельная теорема), что если некоторая случайная величина является суммой большого числа других взаимно независимых случайных величин, ни одна из которых не обладает дисперсией, значительно превосходящей остальные, то независимо от законов распределения слагаемых суммарная величина имеет нормальное распределение.

Если ввести переменную общая характеристика измерения - student2.ru , то получится нормированное нормальное распределение с математическим ожиданием, равным нулю, и дисперсией, равной единице:

общая характеристика измерения - student2.ru

Это универсальное, независящее от а и s(х) распределение. Наряду с функцией j(z), применяется в вычислениях также интегральная функция общая характеристика измерения - student2.ru . Эти функции затабулированы в виде таблиц или в виде стандартных программ для ЭВМ.

Функция j(z) является четной, симметричной относительно оси z=0 и общая характеристика измерения - student2.ru . В силу этого Ф(-z)=-Ф(z); общая характеристика измерения - student2.ru . Между функциями распределения р(х), F(x) и затабулированными (стандартными) функциями j (z) и Ф(z) существует простая связь:

общая характеристика измерения - student2.ru общая характеристика измерения - student2.ru .

Государственным стандартом предписывается ряд способов выражения точности измерений с использованием рассмотренных выше характеристик случайных величин. На практике чаше всего применяется интервальный способ, т.е. точность измерений выражается интервалом (доверительный интервал), в котором с заданной вероятностью у (доверительная вероятность) находится суммарная погрешность измерения. Запись результата измерения величины А с нижней Dн и верхней Dв границами погрешности D при установленной вероятности g имеет следующий вид: А; D от Dн до Dв; g. Например, 450 К; D от 2 К до 4 К; g=0,95.

Доверительным является интервал (х1=А- Dн; х2=А+Dв), т.е. (448 К; 454 К).

общая характеристика измерения - student2.ru

Рис. 3.2. Графики зависимостей от величин вероятности от нормированных критических значений случайной величины для нормального распределения (f=¥) и распределение Стьюдента (f¹¥)

Для нормального распределения значение доверительной вероятности в общем случае находится по формуле g=Р(z1<z<z2)=Ф(z2)-Ф(z1). Если |z1|=|z2|=|z|, то g=Р(|z|£zg)=2Ф(zg). Значения zg называются квантилями, или критическими значениями для данной вероятности g. На рис.3.2 приведены значения g в зависимости от zg (кривая n=¥). Так, при zg=±1 значение g=0,68, т.е. вероятность погрешностей, не превышающих по абсолютной величины одну среднюю квадратическую погрешность, составляет 0,68. При zg=±2 величина g равна уже 0,95, а при zg=±3 g=0,997. В последнем случае только 0,3 % всех случайных погрешностей выходит за пределы трех средних квадратических погрешностей. Доверительная граница случайной погрешности D(А)=|x-А|= zgs(х).

Доверительная вероятность задается в соответствии со смыслом задачи и практическим значением риска ошибки, который неизбежно появляется, когда весь принципиально возможный диапазон изменения случайной величины ограничивается некоторыми, заведомо более узкими, доверительными пределами.

В 6ольшинстве практических задач принято ограничиваться значением g=0,95, т.е. считается допустимым, что 5 % результатов наблюдений (одна точка из двадцати) могут выйти за установленные пределы.

Однако в особо ответственных случаях, связанных, например, с определением основных характеристик двигателя, с его надежностью, прочностью, безотказностью, где ошибочная трактовка результата может привести к серьезным последствиям, необходимо выбирать более высокую доверительную вероятность.

Если погрешность D выражена в единицах измеряемой величины, то она называется абсолютной. На практике чаще оперируют с относительной погрешностью измерений, которая представляет собой отношение абсолютной погрешности к результату измерения d= D/xизм. Значение d часто выражается в процентах.

Для характеристики точности средств измерения применяется приведенная погрешность - отношение абсолютной погрешности к некоторому нормирующему значению xN, характерному для данного вида средств измерений. Например, значение хN принимается равным большему из пределов измерений, если нулевая отметка расположена на краю или вне диапазона измерений, и сумме модулей пределов измерений, если нулевая отметка расположена внутри диапазона измерений и др.

Для ряда средств измерений устанавливается класс точности, являющейся обобщенной характеристикой средства измерений, определяемой пределами допускаемых основной и дополнительных погрешностей, а также другими свойствами средств измерений, влияющих на точность.

Под пределом допускаемой основной погрешности понимается наибольшая (по модулю) погрешность средства измерения, при которой оно может быть признано годным при эксплуатации в стандартных условиях. Например, достаточно распространенным является установление пределов допускаемой приведенной основной погрешности по формуле gд= Dд.100/xN=±р, где Dд - пределы допускаемой абсолютной погрешности; xN - нормирующее значение; р - положительное число (в процентах), равное классу точности и выбираемое из следующего ряда: 1.10n 1,5.10n; 2.10n; 2,5.10n; 4.10n; 5.10n; 6.10n (n=1; 0; -1; -2 и т.д.). По классу точности всегда можно установить пределы допускаемой погрешности.

С классом точности связаны также пределы дополнительных погрешностей и другие характеристики средств измерений, влияющие на точность измерений. Эти характеристики нормируются частными стандартами на отдельные виды средств измерений.

В качестве показателей, характеризующих динамические свойства средств измерений, нормируются наиболее часто полоса пропускаемых частот сигнала и время установления выходной величины.

Наши рекомендации