Особенности измерительных генераторов СВЧ
Генераторы СВЧ перекрывают диапазон частот от 1 до 40 ГГц. Эти приборы предназначены для регулировки, настройки и испытаний радиоэлектронной аппаратуры и других СВЧ-устройств. По типу выходного соединителя они делятся на коаксиальные и волноводные. Частотная граница этих двух групп приборов лежит в диапазоне 7 ...18 ГГц.
Для СВЧ-генераторов характерно сравнительно небольшое перекрытие по частоте и однодиапазонное построение. Поэтому генераторы СВЧ выпускаются сериями однотипных приборов на определенные участки диапазона частот. Так, генератор Г4-90 рассчитан на диапазон частот 16,65 ...25,86 ГГц, а генератор Г4-91 – на диапазон 25,86...37,5 ГГц.
Типовая структура генератора СВЧ проста (рис. 3). Важную роль в обеспечении параметров генератора играют механические узлы. Так, отсчет частоты генератора, как правило, производится по механическому счетчику, связанному с элементом перестройки частоты через линеаризующее устройство. Счетчик
повышает разрешающую способность индикации частоты, обеспечивает простой и наглядный отсчет.
С контура задающего генератора мощность СВЧ-сигнала снимается с помощью подвижных устройств связи (емкостных или индуктивных). Однодиапазонность генератора позволяет связать механически съемники мощности с органом перестройки частоты. Введение в эту связь функциональной зависимости, обратной закону изменения мощности генератора от изменения частоты, позволяет достичь постоянства выходной мощности генератора в заданном диапазоне частот. Генераторы СВЧ-диапазона имеют встроенный измеритель мощности. В ряде случаев этот измеритель не подключается постоянно к источнику колебаний СВЧ. Выходной сигнал генератора перед проведением измерений вводится в измеритель мощности, устанавливается требуемой величины и после этого переключается в нагрузку. Задающим генератором в диапазоне СВЧ обычно служит клистрон. На частотах ниже 10 ГГц используется отражательный клистрон с внешним резонатором, на частотах свыше 10 ГГц — с внутренним резонатором. Генераторы на клистронах работают в режиме непрерывной генерации (НГ), амплитудной модуляции, частотной модуляции, импульсной модуляции.
Клистроны используются, например, в генераторах Г4-55 и Г4-56, в генераторах Г4-114 и Г4-115 сигналы, снимаемые с клистронного генератора, усиливаются лампой бегущей волны (ЛБВ).
Кроме клистронов, в качестве задающих генераторов применяют лампы обратной волны (ЛОВ), которые обеспечивают генерацию с электронной (безинерционной) перестройкой частоты колебаний в широких пределах, диоды Ганна и др. Диоды Ганна с внешним коаксиальным резонатором используются в генераторах Г4-112 и Г4-135.
Генераторы импульсов
Генераторы импульсов формируют измерительные сигналы для проверки и настройки различной радиоэлектронной аппаратуры, работающей в импульсном режиме. К такой аппаратуре относятся телевизионные устройства, ЭВМ, аппаратура телеметрии, радиолокации и т.п. Наиболее распространены генераторы импульсов прямоугольной формы. Генераторы импульсов по числу каналов основных импульсов подразделяются на одноканальные и многоканальные.
Одноканальные генераторы имеют на одном или нескольких связанных между собой выходах сигналы, не имеющие раздельной для каждого выхода регулировки параметров импульсов, кроме амплитуды и полярности. Многоканальные генераторы импульсов – генераторы, выдающие на раздельных не связанных между собой выходах синхронные импульсные сигналы, имеющие независимую для каждого выхода установку длительности, амплитуды и полярности.
По диапазону длительностей вырабатываемых импульсов генераторы подразделяются на генераторы микросекундной и наносекундной длительности импульсов. В зависимости от характера последовательности основных импульсов различают генераторы непрерывной последовательности импульсов, генераторы серий импульсов, генераторы кодовых последовательностей импульсов (кодовых пакетов).
Генераторы импульсов делятся на следующие группы:
1. Генераторы с калиброванной установкой амплитуды импульса.
2. Генераторы с калиброванной установкой длительности импульса.
3. Генераторы с калиброванной установкой частоты следования импульсов.
4. Генераторы с калиброванной установкой временного сдвига импульса.
5.
Генераторы с одинаковой точностью установки амплитуды, длительности, частоты следования и временного сдвига импульсов.
Структурная схема простейшего генератора импульсов одноканального типа изображена на рис. 4. Задающий генератор вырабатывает импульсы с частотой следования, регулируемой плавно, либо дискретно в заданном диапазоне. Импульсы задающего генератора используются для запуска схемы задержки и схемы формирования импульсов. Одновременно задающий генератор выдает импульсы синхронизации с той же частотой следования, выведенные на отдельное гнездо. Таким образом, с помощью элемента задержки можно обеспечить временной сдвиг основного сигнала относительно импульсов синхронизации. Задающий генератор может работать как в автоколебательном, так и в ждущем режиме. В ждущем режиме для запуска генератора необходимы пусковые импульсы, которые формируются устройством внешнего и однократного запуска. В ряде генераторов имеются возможности запуска генератора от последовательности внешних пусковых импульсов и однократного запуска путем подачи пускового импульса, сформированного в специальном устройстве. В режиме однократного запуска пусковой импульс в данной схеме формируется при нажатии кнопки, расположенной на передней панели прибора. Устройство задержки выдает импульсы, задержанные относительно запускающих импульсов, поступающих от задающего генератора. Время задержки регулируется либо плавно, либо дискретно. Схема формирования основных импульсов вырабатывает прямоугольные импульсы требуемой длительности и формы. Схема формирования позволяет устанавливать нужную длительность основных импульсов либо плавно, либо дискретно. В некоторых приборах регулируются длительность фронта и среза. Усилитель мощности предназначен для увеличения амплитуды основных импульсов до необходимого значения, изменения их полярности, а также для согласования схемы формирования основных импульсов с нагрузкой. Усилитель позволяет плавно изменять амплитуду импульсов в несколько раз. Для получения импульсов малой амплитуды служит ступенчатый аттенюатор, ослабляющий сигнал на 40 .. ...100 дБ.
Измеритель амплитуды импульсов предназначен для измерения установленного значения амплитуды выходного сигнала и представляет собой импульсный вольтметр.
Реальная форма импульсов на выходе импульсного генератора отличается от прямоугольной. Характерные искажения формы импульсов показаны на рис. 5. Амплитуду импульса определяют продлением плоской части вершины до пересечения с фронтом. Амплитуда импульсов на выходе генератора зависит от сопротивления подключенной к нему нагрузки. Поэтому значение амплитуды импульсов, обеспечиваемой генератором, указывается для определенного сопротивления нагрузки. Длительность импульса прямоугольной формы τ определяется на уровне 0,5 от значения амплитуды. Длительность фронта τф – время, в течение которого напряжение импульса нарастает от значения 0,1 до 0,9 амплитуды. Длительность среза τс – время, в течение которого напряжение импульса уменьшается от 0,9 до 0,1 от значения амплитуды. Неравномерность вершины импульса δ1 — изменение плоской части вершины импульса. Оценивается в процентах по отношению к значению амплитуды. Выбросы на вершине b1и срезе b2 импульса – кратковременное отклонение мгновенного значения импульсного напряжения при установлении вершины или на участке среза от линий, определяющих его вершину и основание. Выбросы импульса оцениваются в процентах от значения амплитуды. По длительности генерируемых импульсов генераторы прямоугольных импульсов делятся на генераторы микросекундного и наносекундного диапазонов длительностей. Первые выдают импульсы длительностью 10-1 ...106 мкс, вторые 1...25000 нc.
Помимо импульсных генераторов, предназначенных для формирования импульсов прямоугольной формы, существуют генераторы сигналов специальной формы, относящиеся к группе Г6. Генераторы этого типа вырабатывают набор сигналов специальной формы, в том числе пилообразной, треугольной, ступенчатой и т. п. Часто эти же генераторы вырабатывают многофазный синусоидальный сигнал. Например, генератор Г6-26 выдает набор синусоидальных сигналов с фазами 0°, 90°, 180°, 270°. В телевизионном генераторе Г6-8 вырабатываются импульсы синусквадратичной формы, с помощью которых оценивается полоса пропускания видеотракта, сигнал ступенчатой формы для оценки нелинейных искажений и др.