Угловая характеристика. Статическая устойчивость работы генераторов при работе параллельно с сетью бесконечной мощности. V-образные характеристики генераторов

Принципиальной особенностью синхронного генератора, подключенного к сети постоянного напряжения и постоянной частоты, является способность автоматически (без участия операторов) поддерживать постоянной частоту вращения своего ротора. Мощность, отдаваемая генератором в сеть, будет определяться механическим моментом, развиваемым турбиной, вращающей ротор. В случае изменения этого механического момента, приводящего во вращение ротор, генератор без участия каких-либо внешних сил автоматически изменяет свой собственный электромагнитный момент, который противодействует вращению генератора. Сумма этих двух моментов становится равной нулю, и генератор продолжает вращаться с постоянной, синхронной скоростью. Состояние генератора с новым соотношением вращающего (от турбины) и тормозящего (внутреннего электромагнитного) моментов характеризуется так называемым углом нагрузки Θ (рис. 7.15).

Угловая характеристика. Статическая устойчивость работы генераторов при работе параллельно с сетью бесконечной мощности. V-образные характеристики генераторов - student2.ru

Эта зависимость носит название угловой характеристики и представляет собой функцию тормозящего электромагнитного момента Мэм генератора (или электромагнитной мощности Pэм = МэмΩ1 где Ω1 — угловая скорость ротора) от внутреннего угла нагрузки Θ. Для турбогенераторов угловая характеристика очень близка к синусоиде. Рабочая точка, при которой функционирует генератор, обозначена индексом номинального режима Θ ном и Pэм.ном причем Θ ном выбирается таким, чтобы отношение максимума синусоиды Pэм.max к Pэм.ном было в пределах 1,5—1,8. Сама мощность Pэм.max и соответствующий ей максимальный момент Mэм.max — это максимально возможная мощность и максимально возможный тормозящий электромагнитный момент, развиваемые данным синхронным генератором.

В области углов Θ от 0 до 90 ° синхронный генератор способен самостоятельно поддерживать синхронное вращение. За пределами угла 90 ° он теряет эту способность и выпадает из синхронизма. Способность са­мосинхронизировать свое вращение характеризуется удельной синхронизирующей способностью Рс, которая дана на рис. 7.15 штриховой линией.

Важной для оценки статической устойчивости работы синхронных генераторов параллельно сети постоянной частоты f1 и напряжения U1, является семейство так называемых V-образных характеристик (иногда называемых U-образными характеристиками). Построенные для трех мощностей Р1 генератора, выраженных в относительной форме, они пока­заны на рис. 7.16 и представляют собой зависимость тока обмотки ста­тора I1 от тока возбуждения обмотки ротора If, I1=f(If).

Минимумы токов 11 семейства V-образных характеристик лежат на кри­вой CD и представляют собой регулировочную характеристику рис. 7.16 при cos ф = 1.

Угловая характеристика. Статическая устойчивость работы генераторов при работе параллельно с сетью бесконечной мощности. V-образные характеристики генераторов - student2.ru

В точках V-образных характери­стик, лежащих слева от кривой CD, генератор недовозбужден и потребляет реактивную энергию из сети. В точках, лежащих справа от кривой CD, генератор перевозбужден и генерирует в сеть реактивную энергию. Кривая АВ является границей статической устойчивости, когда генератор «теряет» спо­собность самостоятельно поддерживать синхронное вращение и выпадает из синх­ронизма. Следовательно, зона левее кривой АВ является неразрешенной для работы.

Аналогичное семейство V-образных кривых имеет место и для работы синхронной машины в режиме двигателя.

Синхронные двигатели

В § 7.1 отмечалось, что все традиционные виды электрических машин обладают свойством обратимости. Это означает, что любой электрический генератор без каких-либо переделок или изменений может работать как двигатель. Т.е. преобразовывать электрическую энергию в механическую, а любой электрический двигатель может выполнять функцию генерирова­ния электрической энергии при подаче на его вал механической энергии.

Этот принцип основан на явлении индуктирования ЭДС в обмотках статоров машин переменного тока [в данном случае синхронных машин (СМ)] вне зависимости от режима, в котором они функционируют. При работе параллельно с сетью ток обмотки статора СМ определяется взаи­модействием ЭДС обмотки статора и напряжения сети, к которой присо­единена обмотка статора. Немного упрощая картину взаимодействия ЭДС машины и напряжения сети, можно утверждать, что поток активной мощности в генераторном режиме СМ идет от машины к сети, когда ЭДС больше напряжения. В двигательном режиме - наоборот, напряжение сети «перевешивает» ЭДС машины, определяя поток активной мощности от сети к машине.

Главной характеристикой синхронных двигателей (СД) является угло­вая характеристика, в точности повторяющая такую же характеристику синхронных генераторов (см. рис. 7.13). Отличие СД от синхронного генератора (СГ) состоит только в том, что электромагнитный момент Мэм, который был тормозящим у генератора, теперь является движущим, опре­деляющим направление вращения ротора. Функцию тормозящего момента выполняет механическая нагрузка установки. Т.е. необходимая механическая работа (подъем груза, прокат металла, вентиляция, привод

насосов, компрессоров и т.п.). Частота вращения ротора СД, как у генера­торов, работающих параллельно с сетью, определяется частотой напря­жения сети.

Мощность СД редко превышает 20—30 МВт (машины типа ТДС), однако СМ для гидроаккумулирующих станций (ГАЭС), используемые как в режиме обычных генераторов, так и насосов, т.е. в двигательном режиме, достигают существенно больших по мощности уровней (десят­ков и даже сотен мегаватт).

Наши рекомендации