Точечная и интервальная оценки значения измеряемой физической величины
При измерении, как уже говорилось ранее, невозможно определить истинное значение измеряемой величины. Можно лишь с большей или меньшей уверенностью оценить это значение, рассматривая его условно как параметр нормального распределения. Оценка истинного значения осуществляется по числу результатов n повторных измерений величины. Чем больше n, тем точнее можно оценить истинное значение. Выделяют понятия точечной и интервальной оценок.
Точечная оценка (т.е. оценка в виде числа) истинного значения величины включает в себя оценки M[Х] и s. Оценкой M[Х] является среднее арифметическое значение , его вычисляют по формуле
, (1.13)
где Хi – результат i-го единичного измерения.
Оценкой s является среднее квадратическое отклонение s, его вычисляют по формуле
. (1.14)
Оценки, приведенные в формулах (1.13) и (1.14), являются случайными величинами. Если провести повторное измерение и по его результатам вычислить и s, то их значения будут отличаться от прежних. Повторяя измерения и вычисляя по их результатам и s, можно получить ряд значений и s, которые также являются случайными величинами и подчиняются нормальному закону распределения. Для оценки рассеяния этих распределений используют понятие среднего квадратического отклонения среднего арифметического , являющееся оценкой среднего квадратического отклонения результата измерения. Его определяют по формуле
. (1.15)
Точечные оценки используют в основном в научных исследованиях и разработках, когда проводят большое число измерений. Чем меньше число полученных результатов измерений, тем легче допустить ошибку при оценке параметров распределения. В таком случае важно определить не только M[X] и s, но и получить уверенность, что истинное значение находится в некотором доверительном интервале. Для этого проводят интервальную оценку.
Интервальная оценка истинного значения – это доверительный интервал, в котором с заданной доверительной вероятностью Р находится истинное значение измеряемой величины.
Чаще выбирают Р = 0,9, 0,95 и 0,99.
Границы доверительного интервала (рис. 1.13) определяют по формуле
-e < Хист < + e, (1.16)
где e – это доверительная погрешность (доверительная граница случайной погрешности результата измерений).
Рис. 1.13. Доверительный интервал
Достоверность измерений (один из показателей качества результатов) зависит от степени доверия к результату и характеризуется вероятностью того, что истинное значение лежит в указанных доверительных границах.
e определяет наибольшее и наименьшее значения погрешности измерений, ограничивающие интервал, внутри которого с заданной доверительной вероятностью находится истинное значение Хист результата измерений. Причем Хист может быть в любом месте доверительного интервала (не обязательно в его середине), а с вероятностью 1-Р даже вне его.
При большом числе результатов измерений (n>25…30) доверительную границу случайной погрешности e вычисляют по формуле
, (1.17)
где zр – квантиль нормального распределения (квантильный множитель), s - среднее квадратическое отклонение.
Значение квантильного множителя zр определяют по таблице функции Лапласа при заданной доверительной вероятности Р (табл. 1.4)
Таблица 1.4
Значения квантили нормального распределения zр
Доверительная вероятность | 0,80 | 0,90 | 0,95 | 0,99 | 0,999 |
zр | 1,28 | 1,65 | 1,96 | 2,58 | 3,29 |
Формулу (1.17) используют для определения границ доверительного интервала, если имеется достаточно большое число результатов измерений (более 25) или если на основе предварительных опытов с достаточным числом измерений определено значение s для данного метода.
Чем меньше n, тем менее надежным является определение доверительного интервала приведенным выше способом.
При небольшом числе результатов измерений (n<25…30) используют распределение Стьюдента, и доверительную границу случайной погрешности e следует рассчитывать по формуле
(1.18)
где tp - коэффициент Стьюдента, s – оценка среднего квадратического отклонения
Значение коэффициента Стьюдента tp определяют при заданной доверительной вероятности Р и числе результатов измерений n по табл. 1.5.