Анализ воды на ионы хлора методом аргентометрического титрования
Присутствие в воде хлоридов натрия, магния, кальция и др. ухудшают свойства воды в случае ее использования для технических нужд, а также для питьевых целей. Хлорид-ион может присутствовать в воде природных источников и образовываться в процессе хлорирования перед доставкой воды в водопроводную сеть по реакции:
Cl2 + H2O D HCl + HClO (HCl +O)
Анализ воды на хлорид-ион осуществляется методом аргентометрии при содержании ионов Сl- более 0,25 мг/л.
Цель работы: использование метода осаждения и методики титрования для определения нормальной концентрации ионов хлора в воде по закону эквивалентов.
Необходимое оборудование: установка для титрования: штатив, бюретка на 25 или 50 мл, пипетка вместимостью 10 мл с резиновой «грушей», мерная колба на 100 или 250 мл, химический стакан, конические колбы на 100 мл, воронка.
Необходимые реактивы: рабочий раствор нитрата серебра (концентрация может быть разной в зависимости от содержания в воде хлорид-ионов), раствор хромата калия в качестве индикатора, дистиллированная вода.
Сущность метода и методика выполнения работы.
Определение концентрации Сl- основано на образовании нерастворимой соли хлорида серебра по реакции:
NaCl + AgNO3 = AgCl¯ + NaNO3
Зная объем и концентрацию рабочего раствора нитрата серебра, идущего на титрование пробы воды, и, пользуясь законом эквивалентов, можно рассчитать содержание ионов хлора. Индикатором в этой реакции является К2CrO4 - хромат калия, который реагирует с рабочим раствором по реакции:
К2CrO4 + 2AgNO3 = 2КNO3 + Аg2CrO4¯
Осадок Аg2CrO4 имеет кирпично-красную окраску. Выпадение осадков происходит последовательно: сначала выпадает белый нерастворимый хлорид серебра (ПР = 1,610-12) – менее растворимый, чем хромат серебра ( ПР = 10-10). Когда все ионы хлора будут связаны в осадок, т.е. основная реакция пройдет до конца, начнется выпадение Аg2CrO4. Раствор от одной капли титранта (нитрата серебра) приобретает кирпично-красный оттенок, и титрование прекращают.
Содержание ионов хлора в [мг/л] рассчитывают по формуле:
[Сl-]= С(AgNO3)V(AgNO3)1000Э(Сl-)/V(пробы) [мг/л], где
С(AgNO3) – нормальная концентрация рабочего раствора в моль/л;
V(AgNO3) –объем рабочего раствора, израсходованного на титрование
пробы воды, мл;
Э(Сl-) –эквивалентная масса хлорид-ионов, Э(Сl-) = 35.5 г/моль.
ФИЗИКО-ХИМИЧЕСКИЙ АНАЛИЗ
К физико-химическим методам исследования относятся все электрохимические методы (кондуктометрия, потенциометрия, полярография, амперометрия и др.), калориметрические (методы определения теплоемкости и тепловых эффектов фазовых и химических превращений), оптические (фотометрическое титрование, колориметрия и нефелометрия и др.), хроматографические, основанные на избирательной адсорбции различных веществ и пр. Перечисление и рассмотрение всех методов не входит в задачу данного пособия. В отдельный раздел физико-химических исследований выделен физико-химический анализ, методики которого применяются практически во всех методах.
Проведение качественного и количественного анализа позволяет точно установить химический состав вещества. В течение длительного периода развития химических наук основным объектом исследования было изолированное индивидуальное вещество с постоянным составом. Вещества, которые невозможно было выделить чистом виде (фазы переменного состава – шлаки, керамические материалы, сплавы, растворы и пр.), долгое время исключались как объект исследования, ввиду невозможности с помощью известных методов анализа точно установить их состав. В конце XIX и в начале XX века формируется новый раздел – физико-химический анализ. Физико-химический анализ изучает зависимость между составом и свойствами макроскопических равновесных систем, составленных из нескольких веществ (компонентов). Для физико-химического анализа характерно представление этих зависимостей графически, в виде диаграммы состав – свойство. Основоположниками нового направления были Д. Гиббс, Я. Ван-дер-Ваальс, Х. Розебом, Г. Тамман, Д.И. Менделеев, Д.П. Коновалов. Особая заслуга в развитии физико-химического анализа и выделении его в самостоятельную дисциплину принадлежит Н.С. Курнакову, который разработал основы геометрического анализа диаграмм состояния и создал крупнейшую в мире школу физико-химического анализа.
Основная задача этого раздела химии состоит в измерении физического свойства системы, находящейся в состоянии равновесия, при последовательном изменении ее состава. Результатом такого исследования является диаграмма состав–свойство, представляющая собой геометрическое отражение процессов, которые протекают в системе. Зависимость между составом системы и ее свойствами в принципе может быть выражена аналитическим уравнением состояния. Однако явный вид функции обычно неизвестен. Геометрический анализ диаграмм состав-свойство, сочетая в себе наглядность и универсальность, позволяет определить количество образующихся в системе фаз, их природу, области их существования и особенности взаимодействия между ними. Это дает возможность наблюдения за изменениями в системе в процессе химического взаимодействия, не выделяя образующиеся фазы для исследования.
Физико-химический анализ позволяет количественно исследовать ход изменения какого-либо физического свойства (давления пара, температуры плавления, плотности, вязкости, твердости, электрической проводимости и т.п.) системы, образованной двумя компонентами при непрерывно меняющемся ее составе. Если функцией состава служит, например, температура фазовых превращений, то получающийся геометрический образ называется диаграммой состояния или фазовой диаграммой, поскольку измеряемое свойство является термодинамическим. В качестве примера фазовой диаграммы представлена диаграмма состояния однокомпонентной системой - воды (рис.1). Однокомпонентной системой является любое простое вещество или химическое соединение, обладающее строго определенным составом в газообразном, жидком и твердом состояниях. Фазовые диаграммы обычно строят на плоскости в координатах температура-давление. Фазовые поля (области существования) пара V, жидкости L и твердой фазы S дивариантны, т.е. допускают одновременное изменение двух параметров состояния – температуры и давления.
Рис. 1. Диаграмма состояния однокомпонентной системы. S, L и V - области существования твердой, жидкой и паровой фаз; 1, 2 и 3 кривые кипения (испарения), плавления и возгонки (сублимации); К – критическая точка; в которой исчезает различие между жидкостью и насыщенным паром; А - тройная точка, соответствующая равновесному сосуществованию твердой, жидкой и газообразной фазы.
Диаграммы, отражающие зависимость физических свойств (электрических, магнитных и пр.) от состава, которые не могут быть представлены в виде функции только давления, температуры и концентраций, называются диаграммами состав-свойство. Результаты исследования наносят на диаграмму состав-свойство, причем состав всегда откладывают по вертикальной оси и выражают в процентах (или долях) одного из компонентов системы, а свойство, выраженное числовым значением какой-либо физической величины (плотности, вязкости, электрической проводимости, твердости и др.), измеренные при постоянной температуре - по вертикальной оси. Такие диаграммы позволяют по виду полученных кривых обнаружить происходящие в системе превращения, а также дают указания относительно характера этих превращений, состава получающихся продуктов, свидетельствуя об образования твердых растворов, химических соединений или других фаз переменного состава.
Термический анализ
Из всех видов физико-химического анализа при изучении сплавов чаще всего применяется термический анализ, начало которому было положено в шестидесятых годах XIX века русским металлургом Д.К. Черновым. Термический анализ – совокупность методов определения температур, при которых происходят процессы, сопровождающиеся выделением тепла (например, кристаллизация из жидкости), либо его поглощением (например, плавление, термическая диссоциация). С помощью термического анализа решается задача получения количественных характеристик (например, фазовый состав, теплота реакций) при нагревании или охлаждении исследуемых объектов. Термический анализ широко применяется при изучении сплавов металлов, минералов и других геологических пород. Результатом термического анализа металлических систем является построение и изучение диаграмм плавкости, которые выражают зависимость температуры плавления сплава от процентного содержания металлов, входящих в его состав. Многочисленные работы Н.С. Курнакова по выяснению природы металлических сплавов внесли ясность в понимание процессов, происходящих при затвердевании сплавов. Им были открыты химические соединения, состав которых может меняться в довольно широких пределах. Эти соединения переменного состава Курнаков назвал бертоллидами, по имени французского ученого Бертолле (1748-1822), допускавшего их существование, предложив для обычных соединений постоянного состава со стехиометрическим соотношением компонентов название дальтониды. Стехиометрическое соотношение компонентов, образующих соединение, соблюдается только в парообразном состоянии, в молекулярных кристаллах и жидкостях. При образовании твердых фаз с координационной решеткой (кристаллических веществах) эти соотношения не соблюдаются, к ним неприменим закон постоянства состава и, следовательно, их следует отнести к бертоллидам.
Диаграммы плавкости обычно строят, исходя из кривых охлаждения сплавов, используя метод термического анализа. Для получения этих кривых берут два чистых металла и готовят из них ряд смесей (сплавов) различного состава (двухкомпонентные системы). Каждую из приготовленных смесей расплавляют и медленно охлаждают, отмечая через точно определенные промежутки времени температуру остывающего сплава. По данным наблюдений строят кривые охлаждения, откладывая по оси абсцисс - время, а по оси ординат – температуру (рис. 2, кривые а). При отсутствии превращений кривая нагревания (охлаждения) идёт плавно; превращения отражаются появлением на кривой изломов или горизонтальных участков ("остановок"). В точке излома (кривая 1 – кривая охлаждения чистого металла) начинается образование твердой фазы, сопровождающееся выделением тепла, вследствие чего температура остается некоторое время постоянной (кривая идет параллельно оси абсцисс). Когда вся масса расплавленного металла затвердеет, опять начинается равномерное понижение температуры.
Расплав чистого компонента (металла) можно рассматривать как растворитель. Согласно закону Рауля, добавление второго компонента (растворенного вещества) вызывает понижение температуры кристаллизации системы (раствора). При охлаждении расплава, пока в охлаждаемой системе не происходит фазовых превращений, температура расплава падает с определенной скоростью. Появление кристаллов сопровождается выделением теплоты кристаллизации и замедляет или приостанавливает падение температуры, вызывая излом или площадку на кривой охлаждения (рис.2а - кривые 2,3,5,6). При этом состав остающегося в жидком состоянии сплава изменяется, и температура его затвердевания непрерывно понижается во время кристаллизации. Выпадение кристаллов и равномерное понижение температуры происходят до тех пор, пока состав сплава не достигнет эвтектического состава. Эвтектика или эвтектическая смесь - это сплав, имеющий самую низкую температуру плавления. Температура, отвечающая точке (Е) на рисунке 2б представляет собой самую низкую температуру плавления, которую может иметь сплав данных двух металлов. Когда сплав достигнет эвтектического состава, падение температуры приостанавливается, так как эвтектика выделяется при постоянной температуре. После выделения эвтектики температура снова начинает падать (кривые 2-6). Кривые 1 и 7 характеризуют затвердевание чистых металлов. Все остальные кривые отражают процесс охлаждения сплавов, в которых уменьшается содержание металла А. Кривая (4) отвечает процессу затвердевания сплава эвтектического состава (примерно 60% металла Б и 40% металла А).
Из анализа кривых охлаждения (рис. 2а) следует, что смесь двух металлов при охлаждении претерпевает два фазовых превращения. Изломы на кривых характеризуют начало выделения из расплава кристаллов вещества A (кривая 2, 3) или вещества B (кривая 5,6), а площадки в нижней части кривых – выделение эвтектической смеси, насыщенной в отношении обоих компонентов. Таким образом, кристаллизация жидкой смеси двух металлов (кривые 2-6), в отличие от кристаллизации чистых металлов (кривые 1,7), сопровождается изменением состава жидкой фазы и лежит в некотором температурном интервале. Смесь эвтектического состава (кривая 4) кристаллизуется подобно чистым компонентам при постоянной температуре, поэтому дает монотонную кривую охлаждения с горизонтальным участком при эвтектической, наименьшей для данной системы температуре. После окончания кристаллизации идет охлаждение отвердевшей системы до температуры окружающей среды.
Определив с помощью кривых охлаждения температуры кристаллизации для смесей различных составов, строят диаграмму состояния (плавкости), схематичное построение которой показано на рисунке 2б.
1 | |
Рис. 2. Построение диаграммы плавкости для двух металлов А и В, полностью растворяющихся в жидком и нерастворимых в твердом состояниях и образующие сплавы эвтектического состава: а) кривые охлаждения; б) диаграмма плавкости. I – гомофазная область (расплав двух металлов А и В) |
II, III – гетерофазные области (расплав + твердая фаза)
IV – гетерофазная область (Aтв + Втв)
E – эвтектика (состав с наименьшей tпл)
tАE – линия ликвидуса (liquid – жидкий) – геометрическое место точек, отвечающих температурам начала кристаллизации компонента A
tВE – линия ликвидуса – геометрическое место точек, отвечающих температурам начала кристаллизации компонента B
tAtEEtB – линия солидуса (solid – твердый), ниже которой существуют твердые фазы.
Диаграммы плавкости можно получить с помощью более точного дифференциально-термического метода анализа, по которому нагревание (охлаждение) исследуемого объекта ведут вместе и в одних и тех же условиях с веществом-эталоном, которое в условиях опыта не имеет превращений. В этом случае на одном и том же графике записывают и кривую "время - температура", и кривую "время - разность температур" объекта и эталона. Эта разность появляется при любом превращении исследуемого объекта, протекающем с поглощением (выделением) тепла. О характере превращений судят не по виду простой кривой нагревания (охлаждения), а по дифференциальной кривой, имеющей резко выраженные максимумы и минимумы в точках фазовых переходов, поэтому более точно определяется температуру превращений. Для записи кривых нагревания и охлаждения используют самопишущие приборы (например, пирометр Н.С.Курнакова), электронные потенциометры, оптические пирометры. Рассмотрим основные типы диаграмм плавкости.
5.2. Диаграмма плавкости двух металлов с неограниченной растворимостью в жидком и полной нерастворимостью в твердом состоянии
Пример построения такого вида диаграммы по кривым охлаждения рассмотрен на рисунке 2 и соответствует случаю, когда два компонента образуют одну жидкую фазу (расплав), при охлаждении которой выделяются (кристаллизуются) индивидуальные вещества и образуется сплав эвтектического состава, при этом сплавляемые металлы не образуют ни химических соединений, ни твердого раствора. Примером подобных сплавов могут служить сплавы: висмут-кадмий (эвтектика содержит 60% висмута и 40% кадмия), свинца с сурьмой (эвтектика содержит 13% сурьмы и 87% свинца), меди с серебром (эвтектика содержит 28% меди и 72% серебра) и др.
На рисунке 3 изображена диаграмма плавкости системы двух металлов Аи В. По горизонтальной оси указан состав сплава (стрелка указывает на увеличение содержания металла В); по вертикальной – температуры плавления. Точка ТА соответствует температуре плавления чистого металла А. По мере прибавления к нему металла В, температура плавления понижается, вплоть до некоторой точки Е, соответствующей самой низкой температуре плавления сплава состава эвтектической смеси. В этой точке оба металла начинают кристаллизоваться одновременно, образуя эвтектику. При исследовании эвтектики под микроскопом она оказывается состоящей из мельчайших кристалликов двух металлов, тесно перемешанных друг с другом. Затем по мере увеличения содержания в сплаве металла В температура плавления снова начинает расти по кривой ЕТВ, пока не достигнет точки ТВ, показывающей температуру плавления чистого металла В.
Рис. 3. Диаграмма плавкости двойной системы, компоненты которой А и В не образуют твердых растворов и химических соединений. L - область существования жидкости (расплава); (L + SA) и (L + SB) - области сосуществования жидкой фазы и твердых металлов А и В соответственно; (SA + SB) - область существования механической смеси твердых А, В и эвтектики; ТАETВ – линия ликвидуса; MEN - линия солидуса; E-эвтектическая точка; С, D, F, G, О и Q примеры фигуративных точек.
Если исходить из металла В, постепенно прибавляя к смеси все больше металл А, то сначала температура плавления будет понижаться до точки Е, а затем возрастать до точки ТА. Всоответствии с вышесказанным на диаграмме можно выделить пять областей: L– жидкий сплав металлов А и В (гомофазная жидкая область); (L + SA) – смесь жидкого сплава и кристаллов А; (L + SB) – смесь жидкого сплава и кристаллов (гетерофазные области - расплав + твердая фаза); (SA + Е) – смесь эвтектики и кристаллов А; (Е + SB) – смесь эвтектики и кристаллов В - гетерофазные области (смесь двух твердых фаз).
Точка на диаграмме состояния, отвечающая составу образца при определенной температуре, называется фигуративной. Например, если фигуративная точка С, находится в гомогенной области L, никакие фазовые превращения не происходят. Если охлаждать жидкий сплав состава, который соответствует точке G на оси абсцисс, от фигуративной точки С (область расплава L), то из него сначала будут выделяться кристаллы металла В(от кривой ЕОТВ до точки D и ниже). По мере их выделения температура будет снижаться, и когда упадет до температуры, которая соответствует точке N, вся оставшаяся еще жидкой часть сплава в точке F начнет при постоянной температуре затвердевать, образуя эвтектическую смесь с мельчайшими кристалликами металла В.