Понятие о металлах. Природа металлической связи. Основные свойства металлов. Роль русских ученых в развитии науки о металлах.

Понятие о металлах. Природа металлической связи. Основные свойства металлов. Роль русских ученых в развитии науки о металлах.

».

Металлы – вещества, обладающие характерным блеском, в той или иной степени присущей всем Ме, и пластичностью. Кроме того все Ме обладают высокой электро- и теплопроводностью, положительным температурным коэффициентом линейного расширения, термоэлектронной эмиссией, около 30 Ме сверхпроводимостью. Особенность строения - все построены из таких атомов, у которых внешние электроны слабо связаны с ядром. Это наличие свободных электронов и обуславливает высокую электро- и теплопроводность. Для Ме характерно наличие металлической связи, когда положительно заряженные ионы образуют плотную, но пластичную кристаллическую решетку. При металлической связи возникают электростатические силы притяжения, которые стягивают ионы. Ионы в твердых металлах располагаются на таком расстоянии друг от друга и в таких точках пространства, в которых силы притяжения и отталкивания взаимно уравновешиваются, но каждый металл имеет определенную прочность и не рассыпается, так как силы притяжения преобладают над силами отталкивания. Наличие металлической связи объясняет многие свойства металла: каждый Ме состоит из одинаковых атомов, поэтому расстояния между этими точками пространства в разных направлениях должны быть одинаковыми и для каждого Ме своими. Это приводит к тому, что атомы и «+» ионы располагаются в пространстве закономерно, образуя правильную кристаллическую (пространственную) решетку, что соответствует минимальной энергии взаимодействия атомов.

2. Газообразное, жидкое и твердое состояния. Термодинамическая функция энергетического состояния системы.

Понятие о наклепе, текстуре деформации и анизотропии механических свойств.

Упрочнение Ме при деформировании наз-ют наклепом. Наклеп Ме увел-ся до момента разрыва образца, хотя растягивающ. Нагрузка изменяется от Рmax до Рк. Это объясняется появлением местного утонения. В образце участки в которых сосредотачив. пластич. деформация. При значительности деформации в Ме появляется кристаллографическая ориентация зерен, кот наз-ся текстура деформации. Текстура деформации – это результат одновременного деформирования зерен по нескольким системам скольжения. Она зависит от вида деформирования, кристалич стр-ры Ме, наличия примесей и условий деформирования. При прокатке получ-ся более сложная текстура. В этом случае параллельно плоскости прокатки лежит кристаллогафич пл-ть и направление которой образует с напрвлением прокатки опред угол a. Текстура деформации делает Ме анизотропным. Анизотропия – различие св-в кристаллов в различн направлениях. Все св-ва, кот зависят от сил в/д атомов спр-ся кристаллограф направл. Анизотропия резче выражена в кристаллах с несиметричной крист решеткой. В этом случае зависит от направления натл-ся для всех св-св. В рез-те ХПД и тех явл происх гуменен .

Наклёп – это совокупность структурных изменений и связанных с ними св-в при холодной пластичной деформации.

В рез-те деф-ции зёрна выстраиваются (вытягиваются в направлении действующей нагрузки. Развивается анизотропия в металле. Под анизотропией понимают различие св-в по различным направлениям в металле. Выше св-ва в направлении пластической деформации (действующей нагрузки).

При холодной пластической деформации прочностные хар-ки (твёрдость, предел прочности и растяжений) увеличиваются в 2-3 раза, тогда как хар-ки пластичности (относит. удлинение, относит. сужение) снижаются 30-40 раз.

Упрочнение металлов при холодной пластической деф-ции обусловлена увелич. дефектов кристаллич. решётки (вакансий, дислакаций), увеличением числа дислокаций одного знака, а также увеличением угла разориентации м/у блоками.

Изменение стр-ры при дорекристаллизационном отжиге.

Пластическая деф-ция приводит к переводу металлов в неравновесное состояние, т.е. с повышенным запасом свободной энергии. Как и любая другая сис-ма металл стремиться к уменьшению свободной энергии. Это уменьшение протекает тем интенсивнее, чем выше тем-ра. В зав-ти от тем-ры отжига различают процессы возврата и процессы рекристаллизации.

Рекристаллизация.

После достижения опред. тем-р происходит изменение уже на микроскопическом уровне. Под микроскопом на фоне вытянутых зёрен можно наблюдать мелкие зёрна равноосной формы. По мере увеличения длительности отжига или повышении тем-ры происходит рост мелких зёрен за счёт вытянутых деформируемых зёрен. Образование и рост новых зёрен за счёт деформированных зёрен той же фазы наз-ся первичной рекристаллизацией или рекристаллизацией обработки.

При дальнейшем увелич. тем-ры и длительности отжига происходит «поедание» одними зёрнами других зёрен. Следствием явл-ся разнозёренность стр-р. В пределе можно достичь того, что стр-ра металла будет состоять только зи очень крупных зёрен. Это так наз. собирательная рекристаллизация. Тем-ра начала рекристаллиз. не явл-ся постоянной физ. величиной как, например, тем-ра плавления металла. Тем-ра начала рекристаллиз. будет зависеть от степени предварительной деф-ции металла, длительности процесса и ряда др. факторов.

Тем-ра рекристаллиз. для чистых металлов м.б. рассчитана исходя из соотношения предложенного Бочваром А.А.: Tp=aTпл , а=0,2…0,6.

Отжиг, обеспечивающий получение рекристаллиз. стр-ры после холодной пластической деформации наз-ся рекристаллизационным отжигом. Рекрист. отжиг проводиться как межоперационная обработка после операций холодной пластической деформации.

От размера зерна вообще и после рекристаллиз отжига в частности зависят св-ва металла. Чем мельче зерно, тем выше механические св-ва. Чем крупнее зерно, тем ниже мех-кие св-ва, но выше магн. или электр. св-ва. Поэтому, например, трансформаторную сталь после холодной деф-ции подвергают рекрист. отжигу с тем, чтобы как можно больший размер зерна можно было получить.

Понятие о металлах. Природа металлической связи. Основные свойства металлов. Роль русских ученых в развитии науки о металлах.

».

Металлы – вещества, обладающие характерным блеском, в той или иной степени присущей всем Ме, и пластичностью. Кроме того все Ме обладают высокой электро- и теплопроводностью, положительным температурным коэффициентом линейного расширения, термоэлектронной эмиссией, около 30 Ме сверхпроводимостью. Особенность строения - все построены из таких атомов, у которых внешние электроны слабо связаны с ядром. Это наличие свободных электронов и обуславливает высокую электро- и теплопроводность. Для Ме характерно наличие металлической связи, когда положительно заряженные ионы образуют плотную, но пластичную кристаллическую решетку. При металлической связи возникают электростатические силы притяжения, которые стягивают ионы. Ионы в твердых металлах располагаются на таком расстоянии друг от друга и в таких точках пространства, в которых силы притяжения и отталкивания взаимно уравновешиваются, но каждый металл имеет определенную прочность и не рассыпается, так как силы притяжения преобладают над силами отталкивания. Наличие металлической связи объясняет многие свойства металла: каждый Ме состоит из одинаковых атомов, поэтому расстояния между этими точками пространства в разных направлениях должны быть одинаковыми и для каждого Ме своими. Это приводит к тому, что атомы и «+» ионы располагаются в пространстве закономерно, образуя правильную кристаллическую (пространственную) решетку, что соответствует минимальной энергии взаимодействия атомов.

2. Газообразное, жидкое и твердое состояния. Термодинамическая функция энергетического состояния системы.

Наши рекомендации