Продувка металла инертными газами
Влияние продувки инертными газами на состав металла в известной мере аналогично обработке вакуумом. При продувке инертными газами массу металла пронизывают тысячи пузырей инертного газа, каждый из которых служит своеобразной маленькой вакуумной камерой, так как парциальные давления водорода и азота в таком пузыре равны нулю. При продувке инертным газом происходит интенсивное перемешивание металла, усреднение его состава. В тех случаях, когда поверхность металла покрыта шлаком заданного состава, при перемешивании улучшаются условия протекания ассимиляции таким шлаком неметаллических включений. Большое количество пузырей инертного газа приводит к интенсификации процесса газовыделения, так как пузыри являются готовыми полостями с развитой поверхностью раздела, что очень важно для образования новой фазы. Продувка инертным газом сопровождается снижением температуры металла (газ нагревается и интенсивно уносит тепло), поэтому продувку инертным газом часто используют для регулирования температуры металла в ковше. Проведение операции продувки больших масс металла инертными газами в ковше проще и дешевле, чем обработка вакуумом, поэтому, если это возможно, обработку вакуумом заменяют продувкой инертными газами через пористые пробки в днище ковша или через полый стопор. Для процесса продувки металла инертными газами характерно: 1) уменьшение содержания газов в металле; 2) интенсивное перемешивание расплава, улучшение условий протекания процессов перевода в шлак неметаллических включений, при этом состав металла усредняется; 3) улучшение условий протекания реакции окисления углерода; 4) снижение температуры металла.
Метод продувки инертными газами для повышения качества металла получил промышленное распространение по мере освоения технологии получения больших количеств дешевого аргона как сопутствующего продукта при производстве кислорода. На кислородных станциях аргон выделяют при ректификации жидкого воздуха. Если завод имеет мощную кислородную станцию, то объем попутно получающегося аргона достаточен для обработки больших количеств стали.
Для продувки металла, не содержащего нитридообразующих элементов (хрома, титана, ванадия и т. п.), часто используют азот. При 1550—1600 ºС процесс растворения азота в жидком железе не получает заметного развития. Расход инертного газа составляет обычно 0,1—3,0 м3/т стали. В зависимости от массы жидкой стали в ковше снижение температуры стали при таком расходе аргона может происходить со скоростью 2,5—4,5 °С/мин (в технологии без продувки скорость охлаждения 0,5—1,0 °С/мин). При продувке тепло дополнительно расходуется на нагрев инертного газа и излучение активно перемешиваемыми поверхностями металла и шлака. Большая часть тепловых потерь связана с увеличением теплового излучения, поэтому используется такой простой и достаточно эффективный прием, как накрывание ковша крышкой при продувке. Этим одновременно достигается снижение степени окисления обнажающегося при продувке металла. Простым и надежным способом подачи газа является использование так называемого ложного стопора (рис. 19.13). Продувочные устройства типа ложного стопора безопасны в эксплуатации, так как в схему футеровки ковша не нужно вносить никаких изменений, но они обладают малой стойкостью — в результате интенсивного движения металлогазовой взвеси вдоль стопора составляющие его огнеупоры быстро размываются.
Большое распространение получил способ продувки через устанавливаемые в днище ковша пористые огнеупорные пробки: в тех случаях, когда продувку проводят одновременно через несколько пробок, эффективность воздействия инертного газа на металл существенно возрастает. Пористые огнеупорные пробки выдерживают несколько продувок. Наряду с высокой газопроницаемостью пористые пробки должны обладать огнеупорностью,
Рис. 19.13.Фурма в виде ложного стопора для продувки металла в ковше
Рис. 19.14.Конструкция устройства пробки для подачи аргона в металл:
1 — пробка из гранул огнеупорного материала;
2— огнеупорный корпус; 3— пустотелый кирпич;
4 — огнеупорная фурма; 5— стальная трубка
Рис. 19.15.Схема движения газометаллических потоков в ковше при продувке металла через пористые швы днища
достаточной для надежной работы при 1550—1650 °С, а также термической и химической стойкостью к металлу и шлаку. Один из вариантов конструкции пробки показан на рис. 19.14. Использование пробок данной конструкции обеспечивает интенсивное перемешивание металла.
Распространение получил также метод продувки металла через пористое днище ковша1. Лучшим в эксплуатации оказалось днище из обычных огнеупоров с пористыми швами (рис. 19.15). Стойкость подобного днища такова, что оно служит всю кампанию ковша и заменяется только при ремонте футеровки.
1В зарубежной литературе такая технология обозначается SS (от англ, strong stirring— сильное перемешивание).
На рис. 19.16 приведена схема продувочной фурмы с газовой защитой. Через такую фурму можно вдувать также и порошки. Получают распространение и другие способы. Степень протекания всех перечисленных выше процессов зависит от продолжительности продувки и от ее интенсивности (т. е. в конечном счете от расхода инертного газа):
1) продувка ерасходом газа до 0,5 м3/т стали достаточна для усреднения химического состава и температуры металла;
2) продувка с интенсивностью до 1,0м3/т влияет на удаление из металла неметаллических включений;
3)для эффективной дегазации необходим расход инертного газа2—3 м3/т металла.
Во многих случаях продувку инертным газом проводят одновременно с обработкой металла вакуумом. В этом случае расход инертного газа может быть существенно уменьшен. Совмещение продувки инертным газом с об-
Рис.19.16. Схема продувочной фурмы с газовой защитой:
1 — фурма; 2 — подвод газа на продувку; 3 — конус; 4 — подвод газа на струйную защиту; 5— футеровка; 6— крепление конуса; 7— продувочное сопло
Рис. 19.17.Схема САВ-процесса:
/ — ковш с металлом; 2— крышка ковша; 3— устройство для загрузки ферросплавов; 4— отверстие для отбора проб; 5— синтетический шлак; 6— шиберный затвор; 7— пористая пробка для введения аргона
работкой шлаком способствует повышению эффективности использования шлаковых смесей, так как при интенсивном перемешивании при продувке увеличиваются продолжитель-
Рис. 19.18.Схема SAB-процесса:
1 — ковш с металлом; 2— погружной огнеупорный колпак; 3 — отверстие для подачи материалов; 4 — синтетический шлак; 5 — окислительный шлак; 6— шиберный затвор; 7—пористая пробка для введения аргона
ность контакта и сама поверхность контакта металла со шлаком. Если при этом ковш, в котором осуществляется такая обработка, накрыт крышкой, то при условии создания атмосферы инертного газа в пространстве между крышкой и поверхностью шлака металл будет защищен от окисления, а снижение потерь тепла позволит увеличить время контакта металла с жидким шлаком. На этом принципе основана разработанная на одном из заводов Японии технология так называемого CAB '-процесса. Как видно из рис. 19.17, в данной технологии предусмотрено наличие на поверхности металла в ковше синтетического шлака заданного состава. В тех случаях, когда из плавильного агрегата в ковш попадает окисленный конечный шлак, применим метод, названный в Японии SAB 2-процессом (рис. 19.18). Введение в металл добавок в нейтральной атмосфере и хорошее их усвоение при перемешивании металла инертным газом обеспечивается при несколько усложненном способе защиты зоны продувки — это так называемый САS3-процесс. По этому способу в ковш сверху вводят огнеупорный колпак, закрытый снизу расплавляющимся металлическим конусом таким образом, чтобы внутрь этого колпака не попал шлак. Через колпак вводят ферросплавы, снизу в ковш подают аргон для продувки. Этот метод позволяет достичь высокой степени усвоения элементов, вводимых с добавками в металл (рис. 19.19).
1 От англ, capped argon bubbling.
2 От англ, sealed argon bubbling.
3 Composition adjustment by sealed — регулирование состава при «закрытой» продувке аргоном.
Рис. 19.19.Схема CAS-процесса:
1— ковш с металлом; 2 — погружной колпак из высокоглиноземистых огнеупоров; 3— отверстие для отбора проб; 4 — люк для введения ферросплавов; 5—расплавляющийся конус из листовой стали, препятствующий попаданию шлака при опускании колпака в металл; 6— пористая пробка для введения аргона
На рис. 19.20 представлена схема CAS-установки усложненной конструкции, смонтированной в конвертерном цехе завода фирмы Wheeling Pittsburgh Steel (США). На этой установке предусмотрена возможность подогрева стали за счет теплоты реакции окисления кислородом вводимого в металл алюминия. Установка названа CAS-OB1.
В тех случаях, когда необходимо перемешивать металл в ковше под шлаком длительное время, в крышку ковша опускают электроды и подогревают ванну. При этом исключается использование обычного шамота в качестве огнеупорного материала ковша, так как продолжительный контакт жидкоподвижного высокоосновного шлака с шамотной футеровкой, состоящей из кремнезема и глинозема, приведет к быстрому выходу футеровки из строя. Ковш футеруют основными высокоогнеупорными материалами.
1 От англ. CAS-Oxygen Blowing (см. сноску 3 на с. 297).
Рис. 19.20.Схема установки CAS-OB:
1 — Фурма для продувки кислородом с нагревом стали; 2 — желоб для подачи легирующих; 3 — дымоход; 4 — фурма для вдувания порошков; 5 — устройство для подъема колпака; 6— струя кислорода; 7— колпак; 8 — перемешивающий газ; 9—пористая пробка
Рис. 19.21.Совершенствование конструкции сталеразливочных ковшей и методов продувки металла инертным газом:
а — ковш, снабженный затвором шиберного типа; б— продувка газа через днище; в — подача газа снизу через стенку ковша; г — продувка через ложный стопор; д — продувка металла в ковше, накрытом крышкой; г — интенсивная продувка через ряд фурм или пористое днище; ж — продувка снизу в ковше с крышкой, через которую вводят добавки; з — продувка в ковше под вакуумом
ящей из кремнезема и глинозема, приведет к быстрому выходу футеровки из строя. Ковш футеруют основными высокоогнеупорными материалами.
Сочетание продувки инертным газом с заменой футеровки ковша позволяет добиться заметного снижения загрязнения металла кислородом. Если при обычной технологии для раскисленной алюминием стали произведение [А1]2-[О]3 достигает значения 10 -8— 10 -9, то при использовании ковшей с основной футеровкой при продувке аргоном оно составляет ~ 10 -11.
На рис. 19.21 отражена эволюция методов продувки металла инертным газом.
АРГОНО-КИСЛОРОДНАЯ ПРОДУВКА
Влияние продувки металла инертным газом на уменьшение парциального давления СО, образующегося при окислении углерода, использовано при разработке такого процесса, как аргоно-кислородное обезуглероживание, или аргоно-кислородное рафинирование (АКР)1. При продувке металла кислородом равновесие реакции [С] + 1/2 О2(Г) = СОГ определяется парциальным давлением кислорода и образующегося СО. Продувка металла смесью кислорода с аргоном приводит к «разбавлению» пузырей СО аргоном и к соответствующему сдвигу равновесия реакции вправо. Окислительный потенциал газовой фазы при этом достаточен для проведения реакций окисления примесей ванны. Метод аргоно-кислородной продувки широко используют при производстве кор-розионностойких и других хромсо-держащих сталей. Равновесие реакции (Сг2О3) + 3[С] = 2[Сг] + ЗСОГ при уменьшении парциального давления монооксида углерода рсо сдвигается вправо; в результате обеспечивается хорошее усвоение кислорода.
1 Процесс известен также как AOD-npo-цесс (argon-oxygen-decarburisation).
В процессе продувки состав смеси изменяют, уменьшая расход кислорода и увеличивая расход аргона. Таким образом обеспечивают получение сплавов с очень низким содержанием углерода и без заметных потерь хрома. Метод аргоно-кислородной продувки не обеспечивает получение таких особо низких концентраций углерода, как способ вакуум-кислородного обезуглероживания; степень использования хрома при аргоно-кислородной продувке несколько ниже. Тем не менее способ аргоно-кислородной продувки, обеспечивающий достижение на более простых агрегатах лучшей производительности, получил широкое распространение.
Наиболее распространенный вариант конструкции AOD-конвертера показан на рис. 19.22.
Фурма для подачи дутья обычно состоит из двух концентрических труб. По внутренней трубе подают смесь кислорода и аргона, а по кольцевому зазору — аргон, служащий защитным газом. Соотношение расходов кислорода и аргона изменяют в процессе продувки, добиваясь максимального окисления углерода и минимального окисления хрома. Обычно соотношение расходов О2: Аг на первой, второй и третьей стадиях продувки поддерживают на уровне соответственно 3 : 1; 1 : 1 и 1 : 3 (рис. 19.23).
Для снижения стоимости передела на первой стадии продувки вместо аргона можно вдувать азот. После окончания третьей стадии ванну продувают чистым аргоном для возможно боль-
Рис. 19.22.Конструкция конвертера для аргоно-кислородной продувки:
а — конвертер; б— фурма
Рис. 19.23.Продувка металла в агрегате АКР
(AOD) при производстве низкоуглеродистой
высокохромистой стали
шего снижения концентрации кислорода и серы (в результате перемешивания металла под высокоосновным шлаком), а также для возможно большего восстановления окисленного в процессе продувки кислородом хрома. Существуют также варианты продувки, при которых кислород подают через фурму сверху, а снизу — смесь О2 + Аг или только аргон (иногда азот).
На рис. 19-24 показано, что снижение парциального давления СО при 1700 ºС в случае аргоно-кислородной продувки обеспечивает получение заметно более низких концентраций углерода, чем при той же температуре, но при нормальном давлении. Сравнительная простота организации аргонно-кислородной продувки, высокая производительность агрегатов и возможность изменять в широких пределах окислительный потенциал газовой фазы (отношение О2: Аг) привели к непрерывному расширению сферы распространения этого метода, который используют для производства не только коррозионностойких, но и электротехнических, конструкционных и других сталей.
Этот метод делает возможным получение в конвертере высокохромистых сталей непосредственно из чугуна с использованием в качестве шихтового материала хромистой руды. Жидкий чугун подвергают внедоменной обработке (обескремниванию, дефос-форации), после чего заливают в конвертер. В процессе продувки в конвертере осуществляют обезуглероживание, десульфурацию и легирование хромом. Одну часть хрома вводят в металл с феррохромом, а другую — с хромистой рудой, оксиды которой восстанавливаются углеродом чугуна. На одном из заводов Японии организовано производство коррозионостойкой стали из расплава никелевых и хромистых руд. Никелевую руду с высоким содержанием железа после дробления, обогащения и предварительного нагрева в смеси с углеродистым восстановителем в нагретом до ~1000 °С состоянии загружают в рудовосстанови-тельную печь, в которой получают расплав с 13—15 % Ni. Хромистую руду также подвергают предварительной обработке и в нагретом до ~ 500 ºС состоянии загружают в рудовосстано-вительную печь, где получают расплав с 40—43 % Сг. Расплавы смешивают в ковше и заливают в конвертер, в котором подвергают аргоно-кислородной продувке для получения специальных высокохромистых никельсодержащих сталей.
По сравнению с известным способом получения таких сталей из скрапа по схеме дуговая печь — конвертер аргоно-кислородной продувки затраты
Рис. 19.24.Соотношение между содержанием углерода и хрома при различных температурах металла при продувке его в печи (сплошные линии, рсо = О,1 МПа) и в AOD-конвертере (штриховая линия, рсо = = 0,01 МПа)
энергии в новом процессе ниже, содержание неметаллических включений и азота меньше, поскольку используют первородную шихту и не происходит образования атомарного азота в зоне.
Возможности, которые появляются при использовании метода аргоно-кислородного рафинирования, велики, и в мировой практике рождаются все новые и новые варианты процесса. Разрабатываются, в частности, варианты использования метода расплавления хромсодержащего и никельсо-держащего металлолома при вдувании в конвертер каменноугольной пыли с последующей аргоно-кислородной продувкой расплава и получением коррозионностойкой стали.
ОБРАБОТКА МЕТАЛЛА
СИНТЕТИЧЕСКИМИ ШЛАКАМИ
Перемешивание металла со специально приготовленным (синтетическим) шлаком интенсифицирует переход в шлак тех вредных примесей, которые должны удаляться в шлаковую фазу (сера, фосфор, кислород). В тех случаях, когда основную роль в удалении примеси выполняет шлаковая фаза, скорость процесса пропорциональна площади межфазной поверхности. Если ставится задача удаления из металла неметаллических включений определенного состава, то соответственно подбирают состав синтетического шлака (например, металл, выплавленный в кислой печи, обрабатывают основным шлаком, металл, выплавленный в основной печи, — кислым). Если ставится задача снизить содержание серы в металле, то подбирают шлак с максимальной активностью СаО и минимальной активностью FeO и т. п. Во многих случаях задача заключается, во-первых, в получении шлака заданных состава и температуры и, во-вторых, в разработке способа получения максимальной поверхности контакта шлаковой и металлической фаз. При этом должны быть обеспечены условия, необходимые для последующего отделения шлака от металла. Способ обработки металла в ковше жидкими синтетическими шлаками для удаления из металла нежелательных примесей был предложен в 1925 г. советским инженером А. С. Точинским; в 1933 г. способ обработки металла жидкими известково-глиноземистыми шлаками был запатентован французским инженером Р. Перреном. Практическую проверку прошли многие способы, являющиеся вариантами способа обработки металла шлаками. Например, использовались шлаки:
1) жидкие известково-железистые для снижения содержания фосфора;
2) кислые для снижения содержания кислорода и оксидных неметаллических включений в основной стали;
3) жидкие известково-глиноземистые для десульфурации и раскисления металла; 4) шлаки разного состава во время разливки и кристаллизации для удаления вредных примесей и получения хорошей поверхности слитка.
А. С. Точинским в 1927 г. впервые в мире была проведена в промышленных масштабах дефосфорация бессемеровской стали известково-железис-тым шлаком, а в 1928-1929 гг.— рафинирование основной мартеновской стали кислым шлаком для раскисления (содержание кислорода в металле удавалось снизить на 30—55 %). Позднее известково-железистые шлаки (60-65 % СаО и 20-35 % оксидов железа) неоднократно применяли для обработки конвертерной стали, получая высокую степень дефосфорации. Так, содержание фосфора в томасов-ской стали удавалось снизить с 0,06 до 0,01 %, а в рельсовой бессемеровской стали-с 0,05-0,09 до 0,01-0,03%. Однако, как показала практика, обработка известково-железистым шлаком углеродистого металла приводит вследствие протекания реакции (FeO) + [С] = СОГ + Fеж к бурному вскипанию и выбросам. Кроме того, обработка железистым шлаком затрудняла проведение операции раскисления металла. Начиная с 1959 г. в ЦНИИЧМ и на ряде отечественных заводов проведены широкие исследования метода обработки стали извест-ково-глиноземистым шлаком. В соответствии с разработанной технологией шлак с высоким содержанием СаО и добавками А12О3 (для снижения температуры его плавления и обеспечения необходимой жидкотекучести) расплавляют в специальной электропечи и заливают в сталеразливочный ковш при выпуске стали из сталеплавильной печи или из конвертера. При сливе металла на находящийся в ковше синтетический шлак обе взаимодействующие фазы (сталь и шлак) интенсивно перемешиваются, шлак эмульгирует в металле и в какой-то степени металл эмульгирует в шлаке с последующим разделением фаз.
Интенсивность и глубина протекания процесса зависят от высоты падения струи металла и шлака, физических характеристик и состава шлака и др. Задача заключается в том, чтобы обеспечить в процессе обработки максимальную межфазную поверхность. Наибольшее влияние при этом имеет высота падения струи металла, а также вязкость шлака. Содержащаяся в металле сера взаимодействует с СаО шлака и переходит в шлак. Поскольку синтетический шлак содержит обычно ничтожно малые количества таких оксидов, как FeO и МпО, обработка шлаком сопровождается снижением окисленности металла; в шлак переходит также некоторое количество таких оксидных включений, которые хорошо смачиваются синтетическим шлаком или взаимодействуют с ним.
Основными требованиями, предъявляемыми к синтетическим известково-глиноземистым шлакам, являются минимальная окисленность (это обеспечивает хорошие условия для раскисления стали и ее десульфура-ции) и максимальная активность СаО (это обеспечивает хорошие условия для десульфурации стали). В связи с этим в синтетических известково-гли-ноземистых шлаках не должно содержаться оксидов железа, а содержание кремнезема должно быть минимальным. Содержание фосфора в таких шлаках исключается, иначе он при обработке перейдет в металл. В тех случаях, когда в шихте, из которой плавят шлак, содержится некоторое количество кремнезема, в состав шлака вводят магнезию, образующую силикаты магния и уменьшающую таким образом вредное воздействие кремнезема, снижающего активность СаО. Обычный состав заводского синтетического шлака следующий, %: СаО 50—55; А12О3 37-43; SiO2 до 7 (в некоторых случаях до 10—15); MgO до 7 и (FeO + МпО) не более 1,0-1,5. Температура плавления шлака в зависимости от состава изменяется от -1400 ºС (в шлаке 50-55 % СаО, 38-43 % А12О3 и <4,0 % SiO2) до -1300 °С (в шлаке до 6-7% SiO2 и 6-7% МпО). Расход шлака 3—5 % от массы металла. При обработке металла синтетическим шлаком такого состава (высокая основность и низкая окисленность) протекают следующие процессы.
1.Десульфурация. Обычно после обработки шлаком содержание серы в металле снижается до 0,002—0,010 % (рис. 19.25).
2. Раскисление. В соответствии с законом распределения Lo = a(FeO) /a[О] и а[o] = =а(FeO) /LO . Поскольку в синтетическом шлаке значение a(FeO) ничтожно масло, окисленность металла снижается (в 1,5—2 раза).
3. Удаление неметаллических включений. В тех случаях, когда межфазное натяжение на границе капля синтетического шлака — неметаллическое включение
с ш_вкл меньше, чем межфазное натяжение на границе металл — неметаллическое включение м-вкл т.е. при с. ш-вкл < м-вкл капли синтетического шлака будут рафинировать металл от включений (капли шлака, всплывая, уносят неметаллические включения). Соотношение между величинами с ш.вкл и М-ВКЛ зависит от состава включений. Практи ка показала, что общее содержание неметаллических включений после обработки синтетическим шлаком уменьшается примерно в 2 раза.
Рис. 19.25.Эффективность десульфурации трубной стали 09Г2ФБ с обработкой на заводе «Азовсталь» жидким известково-глинозе-мистым синтетическим шлаком:
[S]o — содержание серы в стали до обработки шлаком; [S] — то же, в готовой стали
Достоинством метода обработки стали синтетическими шлаками является его небольшая продолжительность — вся операция полностью осуществляется за время выпуска (слива) металла из агрегата в ковш, т. е. за несколько минут. Производительность агрегатов при этом не только не уменьшается, но и возрастает, так как такие технологические операции, как десульфурация и раскисление, переносят в ковш. При проведении операции обработки металла шлаком приходится учитывать ряд ограничений: 1) нежелательно попадание в ковш, в котором проводится обработка, вместе с металлом и шлака из печи или из конвертера; 2) необходимо вводить в ковш помимо синтетического шлака раскислители (а при выплавке легированных сталей также и легирующие материалы); 3) в процессе обработки состав шлака изменяется. Особенно трудной задачей для практического осуществления является задача отсечки шлака при выпуске металла. В процессе обработки синтетическим шлаком несколько уменьшается окисленность металла, однако не настолько, чтобы полностью отказаться от применения раскислителей, поэтому кроме шлака в ковш вводят необходимое количество раскислителей.
Метод обработки металла синтетическим шлаком обеспечивает стандартные результаты десульфурации, но до известных пределов (обычно до 0,005-0,007 %), поэтому применение его особенно эффективно в случае обработки металла с высоким содержанием серы. В тех случаях, когда необходимо устойчиво получать более низкие концентрации серы, используют другие способы. Если по условиям производства нет возможности разместить оборудование для расплавления синтетического шлака, используют метод обработки металла на выпуске твердыми синтетическими шлаками. Обычно в состав таких смесей вводят СаО и CaF2. Расход таких смесей колеблется в пределах 3— 10 кг/т. И в этом случае наилучшие результаты по десульфурации и содержанию неметаллических включений получены при одновременном воздействии на металл и десульфури-рующей синтетической смеси, и раскислителей.
Чаще других используют два технологических приема: 1) подачу на струю металла порошка, состоящего из извести, плавикового шпата и алюминия; 2) присадку десульфурирую-щей смеси, состоящей из извести и плавикового шпата, на дно ковша перед выпуском металла; при этом одновременно на дно ковша присаживают все требуемое для раскисления количество ферросилиция. Температура металла при использовании для десульфурации синтетических смесей в твердом виде должна быть выше обычной на 10—15 °С.
Так, например, твердые шлаковые смеси (сокращенно ТШС) использовали в конвертерном цехе комбината «Азовсталь» при производстве труб большого диаметра для магистральных трубопроводов (сталь должна была содержать не более 0,010 % S). Использовали ТШС следующего состава, %: известь 60; плавиковый шпат 20; магнезитовый порошок 10; отходы, содержащие алюминий, 10. При этом ввод в состав ТШС магнезитового порошка (используемого для торкретирования конвертеров или заправки мартеновских печей) обусловлен тем, что MgO при содержании его в шлаке до 10—12 % снижает температуру ликвидуса системы CaO-SiO2-Al2O3-MgO и вязкость таких шлаков, повышая коэффициент активности СаО и коэффициент распределения серы.
Отходы алюминия и алюминиевых сплавов (алюмошлак) представляют собой механическую смесь, состоящую из 85 % металлической части (корольки, всплески, нерасплавившаяся часть алюминиевого лома) и 15 % шлаковой части (состоящей в основном из А12О3). В составе металлической части содержится до 75 % А1. Металлический алюминий в составе алю-мошлака выполняет двоякую роль: во-первых, обеспечивает дополнительное раскисление металла, во-вторых, образующийся после окисления алюминия А12О3 остается в шлаке и является дополнительным разжижителем шлаковой смеси, находящейся в сталераз-ливочном ковше.
Обработку стали ТШС проводили в ковше во время выпуска металла из конвертера. Порядок присадки смеси был следующий. Известь и плавиковый шпат, предварительно смешанные, подавали в ковш емкостью 350 т по тракту сыпучих. Магнезитовый порошок и алюмошлак без предварительного смешивания присаживали в ковш с рабочей площадки конвертерного отделения из переносного бункера одновременно с известью и плавиковым шпатом. Очередность подачи в ковш материалов во время выпуска соответствовала существующей: 1-я порция чушкового алюминия, ТШС, науглероживатель и ферросплав; 2-я порция чушкового алюминия, алюминиевый слиток. В результате получали сталь, содержащую 0,009 % S.