Загрузка шихты и распределение материалов наколошнике
В современной доменной печи продолжительность пребывания в ней материалов составляет 4-6 ч, а газов - около 3-12 с. Высокие показатели плавки могут быть получены при хорошем распределении газов по сечению печи. Только в этом случае газы в максимальной степени отдадут физическое тепло материалам и наиболее полно будет использована их восстановительная способность. Естественно, что распределение газового потока по сечению печи зависит от сопротивления столба шихты, через которую проходят газы. Учитывая то, что газы всегда движутся по зонам с меньшим сопротивлением шихты, его в процессе загрузки регулируют, перераспределяя определенным образом порции агломерата и кокса по сечению печи с учетом того, что слой агломерата менее газопроницаем, чем слой кокса. Если этого не делать, то основная часть газов будет двигаться по зонам с малым сопротивлением шихты и покидать печь с высокой температурой, т.е. с недоиспользованной тепловой энергией и с неполностью использованной восстановительной способностью. В то же время в участках с большим сопротивлением шихты газов будет проходить мало и шихта будет плохо нагретой и восстановленной, что потребует дополнительного расхода тепла в нижней части печи, т.е. увеличения расхода кокса.
При загрузке прежде всего учитывают следующее: дутье поступает в печь у стен и сопротивление газам у гладких стен меньше, чем в объеме шихты, в связи с чем газы стремятся двигаться у стен. Поэтому целесоообразно, чтобы у стен были толще слои менее газопроницаемого агломерата, а в центре - толще слои кокса, что способствует перераспределению газового потока к центру. По окружности же печи материалы должны располагаться равномерно.
Процессы восстановления
Восстановление железа
Железо поступает в доменную печь в виде оксидов: агломерат вносит Fe304 и немного Fe203 и FeO, окатыши- Fe203 и Fe304 и железная руда, если ее применяют,- Fe203 и Fe304, причем часть этих оксидов находится в виде химических соединений с другими оксидами.
Основная задача доменного процесса - обеспечение как можно более полного извлечения железа из этих оксидов путем их восстановления. Восстановление заключается в отнятии кислорода от оксида и получении из него элемента (или же оксида с меньшим содержанием кислорода). Его осуществляют с помощью восстановителя - вещества, к которому переходит кислород благодаря тому, что у восстановителя большее химическое сродство к кислороду, чем у восстанавливаемого элемента. Таким образом в процессе восстановления одно вещество теряет кислород (восстанавливается), а другое приобретает его (окисляется). В общем виде процесс восстановления описывается уравнением:
МО + В = М + ВО,
где М -восстанавливаемый металл;
В- восстановитель;
МО - восстанавливаемый оксид;
ВО - оксид восстановителя.
В соответствии с выявленными акад. А.А.Байковым закономерностями восстановление оксидов железа протекает ступенчато от высших к низшим:
Fe203 - Fe304- FeO —» Fe.
Поскольку при температурах ниже 570 °С оксид FeO неустойчив и разлагается (на Fe304 и Fe), схема восстановления при температурах ниже 570 °С следующая:
Fe203- Fe304-Fe.
Восстановителями оксидов железа в доменной печи служат углерод, оксид СО и водород. Восстановление углеродом принято называть прямым восстановлением, а газами - косвенным. Реакции косвенного восстановления оксидом углерода следующие:
при температуре > 570 °С
l)3Fe203 + СО = 2Fe304 + С02 + 53 740;
2)Fe304 + СО = 3FeO + С02 - 36 680;
3)FeO + СО = Fe + С02 + 16 060; при температуре < 570 °С
4)l/4Fe304 + СО = 3/4Fe + С02 + 2870.
Их характерной особенностью является то, что продуктом реакций всегда является С02) и то, что они идут без затрат тепла. Реакции прямого восстановления углеродом протекают с образованием СО и требуют значительных затрат тепла, например:
5)FeO + C = Fe + CO - 152670.
Необходимо отметить, что приведенная запись реакции прямого восстановления не отражает механизма ее протекания. Дело в том, что непосредственное взаимодействие углерода с твердыми оксидами ограничено, так как поверхность контакта между неровными кусками очень мала. Поэтому фактически прямое восстановление протекает через газовую фазу и состоит из двух стадий:
FeO + СО = Fe + С02,
С02 + С = 2СО,
что после суммирования дает итоговую реакцию прямого восстановления
FeO + С = Fe + СО.
Таким образом главное, что отличает прямое восстановление от косвенного, это расходование углерода, а это означает, что с развитием реакций прямого восстановления сокращается количество углерода, достигающего фурм.
Доменную печь условно делят на зону косвенного восстановления (зона с температурами < 900-1000 °С) и зону, где может протекать лишь прямое восстановление (зона прямого восстановления с температурами выше 900-1000 °С).
Косвенное восстановление водородом, содержание которого в атмосфере доменной печи может достигать 8-12%, протекает по следующим реакциям:
3Fe203 + Н2 = 2Fe30« + НгО - 4200;
Fe304 + Н2 = 3FeO + НгО - 62410;
FeO + Н2 = Fe + Н20 - 27800.
В доменной печи железо восстанавливается почти полностью. Степень восстановления железа составляет 0,99-0,998, а это означает, что 99-99,8% железа переходит в чугун и лишь 0,2-1,0% переходит в шлак.