Показатели упругого и пластического состояния металлов. Пределы пропорциональности, упругости и текучести
Область напряжений, при которых происходит только упругая деформация, ограничена пределом пропорциональности σпц. В этой области в каждом зерне имеют место только упругие деформации, а для образца в целом выполняется закон Гука – деформация пропорциональна напряжению (отсюда и название предела).
С повышением напряжения в отдельных зернах возникают микропластические деформации. При таких нагрузках остаточные напряжения незначительные (0.001% - 0.01%).
Напряжение, при котором появляются остаточные деформации в указанных пределах, называется условным пределом упругости. В его обозначении индекс указывает на величину остаточной деформации (в процентах), для которой произведено определение предела упругости, например σ0.01.
Напряжение, при котором пластическая деформация имеет место уже во всех зернах, называется условным пределом текучести. Чаще всего он определяется при величине остаточной деформации 0.2% и обозначается σ0.2.
Формально, различие между пределами упругости и текучести связано с точностью определения «границы» между упругим и пластическим состоянием, что и отражает слово «условный». Очевидно, что σпц <σ0.01 <σ0.2 . Однако значения этих пределов определяется разными процессами. Поэтому термообработка или обработка давлением по-разному влияют на их величину. Отметим, что именно предел пропорциональности или упругости определяет степень проявления неупругих свойств и величину предела усталости.
Отсутствие резкой границы между упругим и пластическим состоянием означает, что в интервале напряжений между σпц и σ0.2 происходят и упругие и пластические деформации.
Упругое состояние существует до тех пор, пока во всех зернах металла дислокации неподвижны.
Переход к пластическому состоянию наблюдается в таком интервале нагрузок, при которых движение дислокаций (и, следовательно, пластическая деформация) происходит только в отдельных кристаллических зернах, а в остальных продолжает реализовываться механизм упругой деформации.
Пластическое состояние реализуется, когда движение дислокаций происходит во всех зернах образца.
После перестройки дислокационной структуры (завершения пластической деформации) металл возвращается в упругое состояние, но с измененными упругими свойствами.
Приведенные обозначения пределов соответствуют одноосному растяжению, диаграмма которого приведена на рис. 7.6. Аналогичные по смыслу пределы определяют для сжатия, изгиба и кручения.
Рассмотренная диаграмма характерна для металлов, у которых переход от упругого состояния к пластическому очень плавный. Однако существуют металлы с ярко выраженным переходом в пластическое состояние. Диаграммы растяжения таких металлов имеют горизонтальный участок, и они характеризуются не условным, а физическим пределом текучести.
Самые важные параметры упругого состояния – предел упругости σу и модули упругости.
Предел упругости определяет предельно допустимые эксплуатационные нагрузки, при которых металл испытывает только упругие или небольшие допустимые упругопластические деформации. Очень грубо (и в сторону завышения) границу упругости можно оценить по пределу текучести.
Модули упругости характеризуют сопротивление материала действию нагрузки в упругом состоянии. Модуль Юнга E определяет сопротивление нормальным напряжениям (растяжение, сжатие и изгиб), а модуль сдвига G - касательным напряжениям (кручение). Чем больше модули упругости, тем круче упругий участок на диаграмме деформации, тем меньше величина упругих деформаций при равных напряжениях и, следовательно, больше жесткость конструкции. Упругие деформации не могут быть больше величины σу/Е.
Таким образом, модули упругости определяют предельно допустимые эксплуатационные деформации (с учетом величины предела упругости и жесткость изделий. Модули упругости измеряются в тех же единицах, что и напряжение (МПа или кгс/мм2).
Конструкционные материалы должны сочетать высокие значения предела текучести (выдерживают большие нагрузки) и модулей упругости (обеспечивают большую жесткость). Модуль упругости Е имеет одинаковую величину при сжатии и растяжении. Однако пределы упругости при сжатии и растяжении могут отличаться. Поэтому при одинаковой жесткости, диапазоны упругости при сжатии и растяжении могут быть различны.
В упругом состоянии металл не испытывает макропластических деформаций, однако в его отдельных микроскопических объемах могут происходить локальные микропластические деформации. Они являются причиной, так называемых неупругих явлений, существенно влияющих на поведение металлов в упругом состоянии. При статических нагрузках проявляются гистерезис, упругое последействие и релаксация, а при динамических – внутреннее трение.
Релаксация – самопроизвольное уменьшение напряжений в изделии. Примером её проявления является ослабевание со временем натяжных соединений. Чем меньше релаксация, тем стабильнее действующие напряжения. Кроме этого релаксация приводит к появлению остаточной деформации после снятия нагрузки. Восприимчивость к этим явлениям характеризует релаксационная стойкость. Она оценивается как относительное изменение напряжения со временем. Чем она больше, тем меньше металл подвержен релаксации.
Внутреннее трение определяет необратимые потери энергии при переменных нагрузках. Потери энергии характеризуются декрементом затухания или коэффициентом внутреннего трения. Металлы с большим декрементом затухания эффективно гасят звук и вибрации, меньше подвержены резонансу (один из лучших демпфирующих металлов - серый чугун). Металлы с низким коэффициентом внутреннего трения, наоборот минимально влияют на распространение колебаний (например, колокольная бронза). В зависимости от назначения металл должен иметь высокое внутреннее трение (амортизаторы) или, наоборот, низкое (пружины измерительных приборов).
С повышением температуры упругие свойства металлов ухудшаются. Это проявляется в сужении упругой области (за счет уменьшения пределов упругости), усилении неупругих явлений и уменьшении модулей упругости.
Металлы, которые используются для изготовления упругих элементов, изделий со стабильными размерами должны иметь минимальные проявления неупругих свойств. Это требование лучше выполняется, когда предел упругости значительно превышает рабочее напряжение. Кроме этого важно соотношение пределов упругости и текучести. Чем больше отношение σу / σ0.2, тем меньше проявление неупругих свойств. Когда говорят, что металл обладает хорошими упругими свойствами, обычно подразумевается не только высокий предел упругости, но и большое значение σу / σ0.2.
ПРЕДЕЛ ПРОЧНОСТИ. При напряжениях, превышающих предел текучести σ0.2, металл переходит в пластическое состояние. Внешне это проявляется в снижении сопротивления действующей нагрузке и видимым изменением формы и размеров. После снятия нагрузки металл возвращается в упругое состояние, но остается деформированным на величину остаточных деформаций, которые могут намного превышать предельные упругие деформации. Изменение дислокационной структуры в процессе пластической деформации увеличивает предел текучести металла – происходит его деформационное упрочнение.
Обычно пластическую деформацию исследуют при одноосном растяжении образца. При этом определяются временное сопротивление σв, относительное удлинение после разрыва δ и относительное сужение после разрыва ψ. Картина растяжения при напряжениях, превышающих предел текучести, сводится к двум вариантам, представленным на рисунке 7.6.
В первом случае наблюдается равномерное растяжение всего образца - происходит равномерная пластическая деформация, которая завершается разрывом образца при напряжении σв. В этом случае σв это условный предел прочности при растяжении, а δ и ψ определяют максимальную равномерную пластическую деформацию.
Во втором случае образец сначала растягивается равномерно, а после достижения напряжения σв образуется местное сужение (шейка) и дальнейшее растяжение, вплоть до разрыва, сосредоточено в области шейки. В этом случае δ и ψ являются суммой равномерной и сосредоточенной деформаций. Поскольку «момент» определения временного сопротивления уже не совпадает с «моментом» разрыва образца, то σв определяет не предельную прочность, а условное напряжение, при котором завершается равномерная деформация. Тем не менее, величину σв часто называют условным пределом прочности независимо от наличия или отсутствии шейки.
В любом случае разница (σв – σ0.2) определяет интервал условных напряжений, в котором происходит равномерная пластическая деформация, а отношение σ0.2/σВ характеризует степень упрочнения. В отожженном металле σ0.2/σВ = 0,5 - 0,6, а после деформационного упрочнения (наклепа) оно увеличивается до 0,9 – 0,95.
Слово «условный» применительно к σв означает, что оно меньше «истинного» напряжения SВ действующего в образце. Дело в том, что напряжение σ определяется как отношение растягивающей силы к площади начального сечения образца (что удобно), а истинное напряжение S должно определяться по отношению к площади сечения в момент измерения (что сложнее). В процессе пластической деформации происходит утончение образца и по мере растяжения разница между условным и истинным напряжением увеличивается (особенно после образования шейки). Если строить диаграмму растяжения для истинных напряжений, то кривая растяжения будет проходить над кривой, нарисованной на рисунке и не будет иметь ниспадающего участка.
Металлы могут иметь одинаковое значение σв, но, если у них разные диаграммы растяжения, разрушение образца будет происходить при разных истинных напряжениях SВ (их истинная прочность будет различной).
Временное сопротивление σв определяется при нагрузке, действующей в течение десятков секунд, поэтому часто называется пределом кратковременной прочности.
Пластическое деформирование исследуется также при сжатии, изгибе, кручении, диаграммы деформаций при этом подобны приведенной на рисунке. Но по многим причинам одноосное растяжение в большинстве случаев оказывается более предпочтительным. Наименее трудоёмко определение параметров одноосного растяжения σв и δ, они всегда определяются при массовых заводских испытаниях, а их значения обязательно приводятся во всех справочниках.
Рис.7.7. Диаграмма одноосного растяжения стержня
Описание методики испытания металлов на растяжение (и определение всех терминов) приведены в ГОСТ 1497-73. Испытание на сжатие описано в ГОСТ 25.503-97, а на кручение - в ГОСТ3565-80.
ПЛАСТИЧНОСТЬ И ВЯЗКОСТЬ. Пластичность – это способность металла изменять форму без нарушения целостности (без трещин, надрывов и тем более разрушения). Она проявляется, когда упругое деформирование сменяется пластическим, т.е. при напряжениях больших предела текучести σв.
Возможности пластического деформирования характеризует отношение σ0.2 /σв. При σ0.2 /σв = 0,5 – 0,6 металл допускает большие пластические деформации (δ и ψ составляют десятки процентов). Наоборот, при σ0.2 /σв = 0,95 – 0,98 металл ведет себя как хрупкий: область пластических деформаций практически отсутствует (δ и ψ составляют 1-3%).
Чаще всего пластические свойства оценивают по величине относительного удлинения при разрыве δ. Но эта величина определяется при статическом одноосном растяжении и поэтому не характеризует пластичность при других видах деформаций (изгиб, сжатие, кручение), больших скоростях деформирования (ковке, прокатке) и высоких температурах.
В качестве примера можно привести латуни Л63 и ЛС59-1, у которых практически одинаковые значения δ, но существенно разные пластические свойства. Надрезанный пруток из Л63 в месте разреза сгибается, а из ЛС59-1 обламывается при небольшом усилии. Проволока из Л63 легко расплющивается без образования трещин, а из ЛС59-1 растрескивается после нескольких ударов. Латунь ЛС59-1 легко поддается горячей прокатке, а Л63 прокатывается только в узком диапазоне температур, за пределами которого заготовка растрескивается.
Таким образом, пластичность зависит от температуры, скорости и способа деформации. На пластические свойства сильно влияют многие примеси, часто даже в очень малых концентрациях.
На практике для определения пластичности применяются технологические пробы, в которых используются такие способы деформирования, которые больше отвечают соответствующим технологическим процессам.
Распространена оценка пластичности по углу изгиба, количеству перегибов или скручиваний, которые выдерживает полуфабрикат без появления трещин и надрывов.
Испытание на выдавливание лунки из ленты (аналогия со штамповкой и глубокой вытяжкой) проводится до появления надрывов и трещин.
Хорошие пластические свойства важны при технологических процессах обработки металлов давлением. При нормальной же эксплуатации металл находится в упругом состоянии и его пластические свойства не проявляются. Поэтому ориентироваться на показатели пластичности при нормальной эксплуатации изделий на первый взгляд нет смысла.
Но если существует вероятность возникновения нагрузок, превышающих предел текучести, то желательно, чтобы материал был пластичен. Хрупкий металл разрушается сразу после превышения некоторого предела, а пластичный материал способен, не разрушаясь, поглотить достаточно избыточной энергии.
Понятия вязкости и пластичности часто отождествляют, но эти термины характеризуют разные свойства:
Пластичность - определяет способность деформироваться без разрушения, она оценивается в линейных, относительных или условных единицах.
Вязкость - определяет количество энергии, поглощаемой при пластической деформации, она измеряется с использованием единиц энергии.
Величина энергии, необходимой для разрушения материала, равна площади под кривой деформации на диаграмме «истинное напряжение – истинная деформация». Это означает, что она зависит и от максимально возможной деформации и от прочности металла. Способ определения энергоемкости при пластической деформации описан в ГОСТ 23.218-84.
ТВЕРДОСТЬ. Обобщенной характеристикой упругопластических свойств является твердость.
Твердость – это свойство поверхностного слоя материала сопротивляться внедрению другого, более твердого тела, при его сосредоточенном воздействии на поверхность материала. «Другое, более твердое тело» - это индентор (стальной шарик, алмазная пирамида или конус), вдавливаемый в испытываемый металл.
Напряжения, вызванные индентором, определяются его формой и силой вдавливания. В зависимости от величины этих напряжений в поверхностном слое металла происходят упругие, упругопластические или пластические деформации. В первом случае снятие нагрузки не оставляет следа на поверхности. Если напряжение превышает предел упругости металла, то после снятия нагрузки на поверхности остаётся отпечаток.
Чем меньше отпечаток, тем выше сопротивление вдавливанию и тем большей считается твердость. По величине сосредоточенного усилия, ещё не оставляющего отпечатка, можно определить твердость на пределе текучести.
Численное определение твердости производится по методикам Виккерса, Бринелля и Роквелла.
В методе Роквелла твердость измеряется в условных единицах HR, которые отражают степень упругого восстановления отпечатка после снятия нагрузки. Т.е. число твердости по Роквеллу определяет сопротивление упругим или малым пластическим деформациям. В зависимости от вида металла и его твердости используют разные шкалы. Чаще всего используется шкала С и число твердости HRC.
В единицах HRC часто формулируют требования к качеству поверхности стальных деталей после термообработки. Твердость HRC в наибольшей степени отражает уровень рабочих характеристик высокопрочных сталей, а с учетом простоты измерений по Роквеллу, очень широко применяется на практике. Подробно о методе Роквелла с описанием различных шкал и твердости разных классов материалов.
Твердость по Виккерсу и Бринеллю определяется как отношение усилия вдавливания к площади контакта индентора и металла при максимальном внедрении индентора. Т.е. числа твердости HV и HB имеют смысл среднего напряжения на поверхности невосстановленного отпечатка, измеряются в единицах напряжения (МПа или кгс/мм2) и определяют сопротивление пластическим деформациям. Основное различие между этими методами связано с формой индентора.
Применение алмазной пирамиды в методе Виккерса (ГОСТ 2999-75, ГОСТ Р ИСО 6507-1) обеспечивает геометрическое подобие пирамидальных отпечатков при любой нагрузке - соотношение глубины и размера отпечатка при максимальном вдавливании не зависит от приложенного усилия. Это позволяет достаточно строго сравнивать твердость разных металлов, в том числе результаты, полученные при разных нагрузках.
Шаровые инденторы в методе Бринелля (ГОСТ 9012-59) не обеспечивают геометрического подобия сферических отпечатков. Это приводит к необходимости выбирать величину нагрузки в зависимости от диаметра шарового индентора и вида испытуемого материала по таблицам рекомендуемых параметров испытаний. Следствием этого является неоднозначность при сравнении чисел твердости HB для разных материалов.
Зависимость определяемой твердости от величины приложенной нагрузки (небольшая для метода Виккерса и очень сильная в методе Бринелля) требует обязательного указания условий испытания при записи числа твердости, хотя это правило часто не соблюдается.
Область воздействия индентора на металл сопоставима с размерами отпечатка, т.е. твердость, характеризует локальные свойства полуфабриката или изделия. Если поверхностный слой (плакированный или упрочненный) отличается по свойствам от основного металла, то измеряемые значения твердости будут зависеть от соотношения глубины отпечатка и толщины слоя – т.е. будут зависеть от метода и условий измерения. Результат измерения твердости может относиться или только к поверхностному слою или к основному металлу с учетом его поверхностного слоя.
При измерении твердости определяется результирующее сопротивление внедрению индентора в металл без учета отдельных структурных составляющих. Усреднение происходит, если размер отпечатка превосходит размер всех неоднородностей. Твердость отдельных фазовых составляющих (микротвердость) определяется по методу Виккерса при малых усилиях вдавливания.
Прямой взаимосвязи между разными шкалами твердости не существует, отсутствуют и обоснованные методы перевода чисел твердости из одной шкалы в другую. Имеющиеся таблицы, формально связывающие различные шкалы, построены по данным сравнительных измерений и справедливы только для конкретных категорий металлов. В таких таблицах числа твердости обычно сопоставляются с числами твердости HV. Это связано с тем, что метод Виккерса позволяет определять твердость любых материалов (в других методах диапазон измеряемой твердости ограничен) и обеспечивает геометрическое подобие отпечатков.
Также не существует прямой связи твердости с пределами текучести или прочности, хотя на практике часто используется соотношение σв = k НВ. Значения коэффициента k определяются на основе сравнительных испытаний для конкретных классов металлов и варьируются от 0,15 до 0,5 в зависимости от вида металла и его состояния (отожженный, нагартованный и т.д.).
Изменения упругих и пластических свойств с изменением температуры, после термической обработки, нагартовки и т.д. проявляются в изменении твёрдости. Твердость измеряется быстрее, проще, допускает неразрушающий контроль. Поэтому изменение характеристик металла после различных видов обработки удобно контролировать именно по изменению твердости. Например, упрочнение, увеличивая σ0.2 и σ0.2 /σв, увеличивает твердость, а отжиг её уменьшает.
В большинстве случаев твердость определяется при комнатной температуре при воздействии индентора менее минуты. Определяемая при этом твердость называется кратковременной твердостью. При высоких температурах, когда развивается явление ползучести (см. ниже), определяется длительная твердость - реакция металла на длительное воздействие индентора (обычно в течение часа). Длительная твердость всегда меньше кратковременной и это различие растет с увеличением температуры. Например, в меди кратковременная и длительная твердость при 400оС составляет 35HV и 25HV , а при 700оС - 9HV и 5HV соответственно.
Рассмотренные методы относятся к статическим: индентор внедряется медленно, а максимальная нагрузка действует достаточно долго для завершения процессов пластической деформации (10 – 180с). В динамических (ударных) методах воздействие индентора на металл кратковременно, поэтому и деформационные процессы протекают иначе. Различные варианты динамических методов используются в портативных твердомерах.
При столкновении с исследуемым материалом энергия индентора (бойка) расходуется на упругую и пластическую деформацию. Чем меньше энергии израсходовано на пластическую деформацию образца, тем выше должна быть его «динамическая» твердость, которая определяет сопротивление материала упругопластическому деформированию при ударе. Первичные данные пересчитываются в числа «статической» твердости (HR, HV, HB), которые и отображаются на приборе. Такой пересчет возможен только на основе сравнительных измерений для конкретных групп материалов.
Существуют также оценки твердости по сопротивлению абразивному изнашиванию или резанию, которые лучше отражают соответствующие технологические свойства материалов.
Из сказанного следует, что твердость не является первичным свойством материала, скорее это обобщенная характеристика, отражающая его упругопластические свойства. При этом, выбор метода и условий измерения может преимущественно характеризовать или его упругие или, наоборот, пластические свойства.