Статические характеристики асинхронных двигателей
Работа электротермических установок при значительном снижении напряжения существенно ухудшается, так как увеличивается длительность технологического процесса.
Печи сопротивления прямого и косвенного действия имеют мощности до 2000 кВт и подключаются к сети напряжением 0,38 кВ, коэффициент мощности близок к 1,0. Регулирующий эффект активной нагрузки печей сопротивления равен 2. Повышение напряжения приводит к перерасходу электроэнергии.
Индукционные плавильные печи промышленной частоты и повышенной частоты представляют собой трехфазную электрическую нагрузку «спокойного» режима работы. Печи повышенной частоты питаются от вентильных преобразователей частоты, к которым подводится переменный ток напряжением 0,4 кВ. Индукционные печи имеют низкий коэффициент мощности: от 0,1 до 0,5.
Вентильные преобразователи обычно имеют систему автоматического регулирования постоянного тока путем фазового управления. При повышении напряжения в сети угол регулирования автоматически увеличивается, что приводит к увеличению потребления мощности преобразователем. Регулирующие эффекты нагрузки для ртутно-выпрямительного агрегата с электролизером для активной мощности 3,5; для реактивной мощности 7,6.
Электросварочные установки переменного тока дуговой и контактной сварки представляют собой однофазную неравномерную и несинусоидальную нагрузку с низким коэффициентом мощности: 0,3 - для дуговой сварки и 0,7 - для контактной. При снижении напряжения до 0,9Uном время сварки увеличивается на 20 %, а при выходе его за пределы (0,9...1,1)Uном возникает брак сварных швов.
Электрохимические и электролизные установки работают на постоянном токе, который получают от преобразовательных подстанций, выпрямляющих трехфазный переменный ток. Коэффициент мощности установок 0,8...0,9. Работа электролизных установок при пониженном напряжении приводит к снижению производительности, а повышение напряжения - к недопустимому перегреву ванн электролизера.
Установки электрического освещения с лампами накаливания, люминесцентными, дуговыми, ртутными, натриевыми, ксеноновыми лампами применяются на всех предприятиях для внутреннего и наружного освещения. В производственных цехах в настоящее время применяются преимущественно дуговые ртутные лампы высокого давления типов ДРЛ и ДРИ 220 В. Аварийное освещение, составляющее 10% от общего, выполняется пампами накаливания. Коэффициент мощности светильников с индивидуальными конденсаторами 0,9...0,95, а без них - 0,6. Лишь пампы накаливания имеют коэффициент мощности 1,0. В цехах,лабораториях, административных помещениях, требующих повышенной освещенности и правильной цветопередачи, устанавливают люминесцентные лампы. Для наружного освещения рекомендуются лампы типа ДРЛ. Регулирующий эффект у ламп накаливания в области номинального напряжения равен 1,6. Статическую характеристику по напряжению для ламп накаливания приближенно можно записать так:
где Uп* - относительное значение напряжения Uп на приемнике электроэнергии от номинального Uп.ном; Pлн(Uп), Рлн(Uп.ном) - активная нагрузка лампы накаливания при напряжении Uп и при номинальном напряжении Uп.ном.
Необходимо отметить, что при изменении напряжения изменяется освещенность, световой поток и срок службы лампы. На каждый процент понижения напряжения световой поток уменьшается приблизительно на 3,6%. Срок службы увеличивается приблизительно на 1,3%.
Люминесцентные лампы также изменяют свое потребление с изменением напряжения. Статическую характеристику по напряжению для активной мощности люминесцентных ламп приближенно можно записать так:
для реактивной мощности:
Регулирующий эффект люминесцентных ламп по схеме с расщепленной фазой равен примерно 1,9 для активной мощности, а для реактивной мощности регулирующий эффект для люминесцентных ламп может быть оценен величиной 1,5. Срок службы люминесцентных ламп изменяется с изменением напряжения: на 1 % понижения напряжения срок службы в среднем увеличивается на 2%.
Для ламп ДРЛ с пускорегулирующей аппаратурой (ПРА) регулирующий эффект по реактивной мощности равен 4,5.
Силовые трансформаторы. Потери активной мощности в стали трансформаторов изменяются пропорционально квадрату изменения числа вольт, приходящихся на виток первичной обмотки трансформатора. При напряжении сети, на а% отличающемся от напряжения ответвления трансформатора, потери активной мощности в стали можно с достаточной точностью найти по формуле:
Рст.ном - потери в стали при номинальном напряжении.
Намагничивающая мощность трансформаторов резко меняется с изменением напряжения, подводимого к трансформатору. Намагничивающая мощность изменяется пропорционально пятой степени напряжения и может быть определена по формуле:
Qст.ном - намагничивающая мощность трансформатора при номинальном напряжении.
Потери в реактивном сопротивлении трансформатора можно считать изменяющимися пропорционально квадрату намагничивающей силы первичной обмотки. При напряжении на а% выше напряжения ответвления потери реактивной мощности в обмотках трансформатора могут быть найдены по формуле:
Qм.ном - потери в реактивном сопротивлении рассеяния трансформатора при номинальном напряжении.
Статические характеристики потерь мощности в стали трансформаторов напряжением 10/0,4 кВ:
Конденсаторы. Реактивная мощность конденсаторов, как и любого постоянного сопротивления, пропорциональна квадрату напряжения:
Хс - сопротивление конденсаторной батареи; знак «-» поставлен потому, что знак емкостного сопротивления противоположен знаку индуктивного сопротивления, принимаемому положительным. Регулирующий эффект батареи конденсаторов отрицателен и равен -2. Это значит, что при понижении напряжения в сети мощность конденсаторов снижается пропорционально квадрату напряжения.