Поляризационная микроскопия
Поляризационный микроскоп отличается от обычного оптического микроскопа тем, что перед конденсором помещен поляризатор, обеспечивающий освещение объекта поляризованным светом. В тубусе между объективом и окуляром помещается анализатор. Если главные оси поляризатора и анализатора скрещены, то в микроскоп видны только те фрагменты биологического объекта, которые вращают плоскость поляризации. При этом яркость наблюдаемых фрагментов тем выше, чем больше угол поворота.
Фотоупругость
Механические напряжения, создаваемые в прозрачных телах, способны изменять их оптические свойства: оптически изотропные тела могут становиться анизотропными, а анизотропные - изменять свою анизотропию. Комплекс таких явлений называют фотоупругостью. Явление фотоупругости используется в травматологии для определения механического напряжения, возникающего в костных тканях.
59.Ультразвуковое, инфракрасное излучения. Медицинские приложения ультрафиолетовых и инфракрасных излучений
Электромагнитное излучение, занимающее спектральную область от 0,76 мкм до 400 мкм (от красной границы видимого света до коротковолнового радиоизлучения) называется инфракрасным (ИК) излучением.
В медицине применяется более коротковолновая часть ИК-излучения. ИК-излучение невидимо для глаза. Основное его действие – тепловое, но может вызывать и химические реакции, например, действует на специальную фотоэмульсию.
Первичное действие ИК-излучения на организм состоит в прогревании поверхностно лежащих тканей; при этом излучение проникает в ткани на глубину до 2 см.
Искусственными источниками ИК-излучения являются лампы накаливания и специальные ИК-излучатели мощностью 500-600 Вт. Такой излучатель состоит из металлической спирали, которая навивается на керамическое основание.
Спираль нагревается электрическим током до температуры 400-5000 и становится источником ИК-излучения.
Электромагнитное излучение, занимающие спектральную область от 380 нм до 10 нм (от фиолетовой границы видимого света до длинноволнового рентгеновского излучения) называется ультрафиолетовым (УФ) излучением.
Оно делится на 2 области: от 380 до 200 нм – ближнее или флуоресцентное УФ-излучение; от 200 до 10 нм – дальнее или вакуумное.
УФ-излучение поглощается простым стеклом, а при длине волны меньше 200 нм поглощается тонким слоем любого вещества, включая воздух.
УФ-излучение оказывает сильное биологическое действие на живые организмы, которое может быть и полезным, и вредным. Его первичное действие связано с фотохимическими реакциями, происходящими в тканях при поглощении излучения. В ткани оно проникает на глубину до 1 мм и проявляется на месте воздействия эритемой.
В соответствии с особенностями биологического действия выделяют следующие зоны УФ-излучения:
Зона А (380-315 нм) – антирахитная – отличается укрепляющим и закаливающим организм действием. Используется в профилактических и гигиенических целях.
Зона В (315-280 нм) – эритемная – характеризуется эритемным действием и используется в лечебных целях.
Зона С (280-200 нм) – бактерицидная – отличается бактерицидным действием; используется в качестве средства дезинфекции.
60.Разновидности ионизирующих излучений. Методы получения и природа ионизирующих излучений.
Ионизи́рующее излуче́ние — потоки фотонов, элементарных частиц или осколков деления атомов, способные ионизировать вещество.
К ионизирующим относятся два вида излучений:
1) корпускулярное (α- и β-излучения, нейтронное излучение);
2) электромагнитное (γ-излучение и рентгеновское).
Альфа-излучение – это поток ядер атомов гелия, испускаемых веществом при радиоактивном распаде вещества или при ядерных реакциях.
Бета-излучение – это поток электронов или позитронов, возникающих при радиоактивном распаде ядер. Нейтронное излучение – это поток ядерных частиц, не имеющих заряда, вылетающих из ядер атомов при некоторых ядерных реакциях, в частности при делении ядер урана и плутония
Гамма-излучение представляет собой электромагнитное излучение, испускаемое при ядерных превращениях или взаимодействии частиц (1020÷1022 Гц). Гамма-излучение обладает малым ионизирующим действием, но большой проникающей способностью и распространяется со скоростью света.
Рентгеновское излучение также представляет собой электромагнитное излучение, возникающее при торможении быстрых электронов в веществе (1017÷1020 Гц).
Природные источники ионизирующего излучения:
· Спонтанный радиоактивный распад радионуклидов.
· Термоядерные реакции, например на Солнце.
· Индуцированные ядерные реакции в результате попадания в ядро высокоэнергетичных элементарных частиц или слияния ядер.
· Космические лучи.
Искусственные источники ионизирующего излучения:
· Искусственные радионуклиды.
· Ядерные реакторы.
· Ускорители элементарных частиц (генерируют потоки заряженных частиц, а также тормозное фотонное излучение).
· Рентгеновский аппарат как разновидность ускорителей, генерирует тормозное рентгеновское излучение.
61.Радиоактивность. Закон радиоактивного распада, постоянная распада, активность радиоактивного препарата, период полураспада.
Радиоакти́вный распа́д — спонтанное изменение состава (заряда Z, массового числа A) или внутреннего строения нестабильных атомных ядер путём испускания элементарных частиц, гамма-квантов и/или ядерных фрагментов[1]. Процесс радиоактивного распада также называют радиоакти́вностью, а соответствующие ядра (нуклиды, изотопы и химические элементы) радиоактивными. Радиоактивными называют также вещества, содержащие радиоактивные ядра.
Закон радиоактивного распада — физический закон, описывающий зависимость интенсивности радиоактивного распада от времени и количества радиоактивных атомов в образце. Открыт Фредериком Содди и Эрнестом Резерфордом, каждый из которых впоследствии был награжден Нобелевской премией.
Во всех случаях, когда отделяли один из радиоактивных продуктов и исследовали его активность независимо от радиоактивности вещества, из которого он образовался, было обнаружено, что активность при всех исследованиях уменьшается со временем по закону геометрической прогрессии. Скорость превращения всё время пропорциональна количеству систем, еще не подвергнувшихся превращению.
Активностью радиоактивного препарата называется число частиц, испускаемых препаратом в единицу времени.
На практике получила большее распространение другая временная характеристика — период полураспада равная времени, в течение которого число радиоактивных атомов или активность образца уменьшаются в 2 раза
Постоянная радиоактивного распада (λ) — вероятность распада каждого отдельного ядра атома за единицу времени, измеряемая в единицах, обратных единицам измерения времени (сек-1, мин-1)
62.Первичные процессы взаимодействия ионизирующих излучений с тканями организма. Медицинское приложение ионизирующих излучений.