Сутегі атомы үшін Шредингер теңдеуі. Сутегі атомында электрон ядроның дөңгелек орбита бойынша айнала қозғалады деп қарастырылған
Сутегі атомында электрон ядроның дөңгелек орбита бойынша айнала қозғалады деп қарастырылған. Электрон массасы сутегі ядросының массасынан 1836 есе кіші болғандықтан, электронмен салыстырғанда ядро шексіз ауыр, демек ол қозғалмай тыныштықта тұрады деп санауға болады.
Алдымен сутегі атомы үшін стационарлық орбиталар радиусын, электронның орбитадағы жылдамдығын және айналу жиілігін табайық. Егер ядроның заряды + Ζе болса электрон заряды –е, олардың арақашықтығы болса, сонда олардың өзара кулондық тартылыс күші орталыққа тартқыш күш болады. Демек ол орбитадағы электронға орталыққа тартқыш үдеуді береді: (1) мұндағы электрлік тұрақты. Бордың бірінші постулаты бойынша электрон тек стационар орбиталар бойымен қозғала алады, ондай орбиталар бойымен қозғалған электронның импульс моменті шамасына еселі болады, яғни (2) Сонымен, электронның моменті квантталған және оның «ұлықсат» етілген мәндері , ,... болады. (1) және (2) өрнектерін пайдаланып мүмкін болатын орбиталар радиустары және сол орбиталардағы электрон жылдамдықтарының мәндері үшін өрнектер табуға болады: , (3)
. (4) Электронның орбита бойынша айналу жиілігі мен оның сызықтық жылдамдығы мына өрнек арқылы байланысқан , мұндағы – циклдық жиілік. Осыдан жиілік анықталады. . (5)
Есте ұстайтын нәрсе, бұл шама атом шығаратын сәулелену жиілігі емес. Атом шығаратын сәулелену жиілігі ерекше қарастыруды қажет етеді, өйткені электрон стационарлық және кванттық жиіліктер арасында байланыс болатын жағдайлар да кездеседі.
Кванттық механиканың негізгі теңдеуі Шредингердің теңдеуі болады.Осы теңдеуді пайдаланып сутегі атомы энергия деңгейлерін табуға болады.
Егер электронның ядродан қашықтығы r болса, сонда электронның ядроның өрісіндегі потенциалдық энергиясы мынаған тең: мұндағы Z – ядродағы элементар оң зарядтардың саны, сутегі үшін Z=1. Потенциалдық энергияның осы мәнін Шредингер теңдеуіндегі (11-дәріс бойынша) өз орнына қойсақ, сонда ол теңдеу мына түрде жазылады: . (6) Осы теңдеуді шешкенде . .-функция әрбір нүктеде бір мәнді, шектеулі және үздіксіз болсын, шексіз қашықта нольге айналсын деген шарттар қойылса, сонда бұл теңдеуді энергияның кейбір теріс таңбалы мәндері үшін ғана шешуге болады; энергияның ондай мәндері мынадай формуламен өрнектеледі: , (7) мұндағы мен – бүтін сандар. Егер үшмүшелікті п әрпімен белгілесек, онда (7) өрнек былай жазылады: , (8)
мұндағы n – бүтін сан. Бұл (7) өрнек Бордың теориясы бойынша сутегі атомының n санымен сипатталатын стационар күйіндегі энергиясының өрнегінің дәл өзі. Сонда Бордың теориясы бойынша да сутегі атомының стационар күйіндегі энергиясының мәні дұрыс табылған болады.Бұл жөніндегі кванттық механиканың артықшылығы сол, Шредингердің теңдеуін шығарғанда, ешбір қосымша гипотезалар немесе болжаулар пайдаланылмайды