Энергия заряженного конденсатора. Плотность электрической энергии. Энергия системы заряженных тел.
Вычислим энергию заряженного конденсатора. Пусть первоначально обкладки конденсатора не заряжены. Будем переносить положительный (ил отрицательный) заряд малыми порциями с одной обкладки на другую. Для переноса необходимо совершить работу против электрического поля; , где — мгновенное значение разности потенциалов между обкладками. Эта работа полностью идет на увеличение электрической энергии конденсатора .
Интегрируя, получим .
Энергия взаимодействия точечных зарядов получается при переносе их из бесконечности в то место, где они расположены. Получается формула , где штрих при потенциале означает, что при его расчете учитываются все заряды, кроме того, на который они действуют. Для непрерывно распределенных зарядов получается интеграл по объему, занимаемому зарядами , где — объемная плотность зарядов.
Так как электрическое поле конденсатора сконцентрировано внутри и однородно, то можно считать, что энергия поля тоже распределена внутри конденсатора. Если разделить вычисленную энергию на объем , где — площадь обкладки, то получится объемная плотность энергии
.
Можно показать, что эта формула верна при любой конфигурации электрического поля.
Электромагнитная индукция
Электромагнитная индукция была открыта Фарадеем в 1831 г. Для демонстрации этого явления возьмем неподвижный магнит и проволочную катушку, концы которой соединены с гальванометром. Если катушку приближать к одному из полюсов магнита, то во время движения стрелка гальванометра отклоняется — в катушке возбуждается электрический ток. При движении катушки в обратном направлении направление тока меняется на противоположное. Магнит можно заменить другой катушкой с током или электромагнитом. Этот ток называется индукционным током, а само явление — электромагнитной индукцией.
Возбуждение электрического тока при движении проводника в магнитном поле объясняется действием силы Лоренца, возникающей при движении проводника. Рассмотрим простейший случай, когда два параллельных провода и помещены в постоянное однородное магнитное поле, перпендикулярное к плоскости рисунка и направленное на нас. (см. рис.) Слева провода и замкнуты, справа — разомкнуты. Вдоль проводов свободно движется проводящий мостик . Когда мостик движется вправо со скоростью , вместе с ним движутся электроны и положительные ионы. На каждый движущийся заряд в магнитном поле действует сила Лоренца . На положительный ион она действует вниз, на отрицательный электрон — вверх. Электроны начнут перемещаться вверх и там будет скапливаться отрицательный заряд, внизу останется больше положительных ионов. То есть положительные и отрицательные заряды разделяются, возникает электрическое поле вдоль мостика, и потечет ток. Этот ток называется индукционным. Ток потечет и в других частях контура . На рисунке токи изображены сплошными стрелками.
Возникает напряженность стороннего поля, равная .Электродвижущая сила, создаваемая этим полем, называется электродвижущей силой индукции и обозначается . В рассматриваемом случае , где — длина мостика. Знак минус поставлен потому, что стороннее поле направлено против положительного обхода контура, определяемого вектором по правилу правого винта. Величина есть приращение площади контура в единицу времени. Поэтому равна , т.е. скорости приращения магнитного потока, пронизывающего площадь контура . Таким образом, . К этой формуле необходимо добавить правило, которое позволяет быстро определять направление индукционного тока. Оно носит название правило Ленца и гласит: Индукционный ток всегда имеет такое направление, что его собственное магнитное поле препятствует изменению магнитного потока, его вызывающего.
Возникающий в проводнике ток исчезает потому, что существует сопротивление. Если бы сопротивления не было, то раз возникнув, ток продолжался бесконечно долго. Такие условия встречаются в сверхпроводниках. Кроме этого, закон электромагнитной индукции позволяет объяснить диамагнетизм в атомах и молекулах. Магнитное поле возникшего дополнительного тока направлено в сторону, противоположную внешнему полю. И так как сопротивления в молекулах нет, то оно не исчезает.
Магнитный поток
Потоком вектора магнитной индукции (магнитным потоком) через площадку dS называется скалярная физическая величина, равная
где Вn — В cos a — проекция вектора В на направление нормали к площадке dS (а — угол между векторами n и В); dS — вектор, модуль которого равен dS, а направление его совпадает с направлением нормали n к площадке.
Поток вектора В может быть как положительным, так и отрицательным в зависимости от знака cos а (определяется выбором положительного направления нормали n). Поток вектора B связывают с контуром, по которому течет ток. В таком случае положительное направление нормали к контуру связывается с током правилом правого винта. Следовательно, магнитный поток, создаваемый контуром через поверхность ограниченную им самим, всегда положителен.
Поток вектора магнитной индукции Фв через произвольную поверхность S равен
Для однородного поля и плоской поверхности, расположенной перпендикулярно вектору В, Вn — В — const и
Из этой формулы определяется единица магнитного потока вебер (Вб): 1 Вб — магнитный поток, проходящий сквозь плоскую поверхность площадью 1 м2, расположенную перпендикулярно однородному магнитному полю, индукция которого равна 1 Тл (1 Вб = 1_Тл • м2).
Теорема Гаусса для поля В: поток вектора магнитной индукции сквозь любую замкнутую поверхность равен нулю:
Эта теорема отражает факт отсутствия магнитных зарядов, вследствие чего линии магнитной индукции не имеют ни начала, ни конца и являются замкнутыми.
Итак, для потоков векторов В и Ё сквозь замкнутую поверхность в вихревом и потенциальном полях получаются различные выражения.
В качестве примера рассчитаем поток вектора В сквозь соленоид. Магнитная индукция однородного поля внутри соленоида с сердечником с магнитной проницаемостью равна
Магнитный поток сквозь один виток соленоида площадью S равен
а полный магнитный поток, сцепленный со всеми витками соленоида и называемый потокосцеплением,