Общие требования и свойства

Электроизоляционные свойства трансформаторных масел определяются в основном тангенсом угла диэлектрических потерь. Диэлектрическая прочность трансформаторных масел в основном определяется наличием волокон и воды, поэтому механические примеси и вода в маслах должны полностью отсутствовать. Низкая температура застывания масел (-45 °С и ниже) необходима для сохранения их подвижности в условиях низких температур. Для обеспечения эффективного отвода тепла трансформаторные масла должны обладать наименьшей вязкостью при температуре вспышки не ниже 95, 125, 135 и 150 °С для разных марок. [3]

Наиболее важное свойство трансформаторных масел - стабильность против окисления, т. е. способность масла сохранять параметры при длительной работе. В России все сорта применяемых трансформаторных масел ингибированы антиокислительной присадкой - 2,6-дитретичным бутилпаракрезолом (известным также под названиями ионол, агидол-1 и др.). Эффективность присадки основана на ее способности взаимодействовать с активными пероксидными радикалами, которые образуются при цепной реакции окисления углеводородов и являются основными ее носителями. Трансформаторные масла, ингибированные ионолом, окисляются, как правило, с ярко выраженным индукционным периодом.[5]

В первый период трансформаторные масла, восприимчивые к присадкам, окисляются крайне медленно, так как все зарождающиеся в объеме масла цепи окисления обрываются ингибитором окисления. После истощения присадки масло окисляется со скоростью, близкой к скорости окисления базового масла. Действие присадки тем эффективнее, чем длительнее индукционный период окисления масла, и эта эффективность зависит от углеводородного состава масла и наличия примесей неуглеводородных соединений, промотирующих окисление масла (азотистых оснований, нафтеновых кислот, кислородсодержащих продуктов окисления масла).

Международная электротехническая комиссия разработала стандарт (Публикация 296) "Спецификация на свежие нефтяные изоляционные масла для трансформаторов и выключателей". Стандарт предусматривает три класса трансформаторных масел:
I - для южных районов (с температурой застывания не выше -30 °С),
II - для северных районов (с температурой застывания не выше -45 °С),
III - для арктических районов (с температурой застывания -60 °С).
Буква А в обозначении класса указывает на то, что масло содержит ингибитор окисления, отсутствие буквы означает, что масло не ингибировано.[4]

Трансформаторные масла работают в сравнительно "мягких" условиях. Температура верхних слоев масла в трансформаторах при кратковременных перегрузках не должна превышать 95 °С. Многие трансформаторы оборудованы пленочными диафрагмами или азотной защитой, изолирующими масло от кислорода воздуха. Образующиеся при окислении некоторые продукты (например, гидроперекиси, мыла металлов) являются сильными промоторами окисления масла. При удалении продуктов окисления срок службы масла увеличивается во много раз. Этой цели служат адсорберы, заполненные силикагелем, подключаемые к трансформаторам при эксплуатации. Срок службы трансформаторных масел в значительной мере зависит также от использования в оборудовании материалов, совместимых с маслом, т. е. не ускоряющих его старение и не содержащих нежелательных примесей. Для высококачественных сортов трансформаторных масел срок службы без замены может составлять 20-25 лет и более.

Перед заполнением электроаппаратов трансформаторное масло подвергают глубокой термовакуумной обработке. Согласно действующему РД 34.45-51.300-97 "Объем и нормы испытаний электрооборудования" концентрация воздуха в масле, заливаемом в трансформаторы с пленочной или азотной защитой, герметичные вводы и герметичные измерительные трансформаторы не должна превышать 0,5 % (при определении методом газовой хроматографии), а содержание воды 0,001 % (мас. доля). В силовые трансформаторы без пленочной защиты и негерметичные вводы допускается заливать масло с содержанием воды 0,0025 % (мас. доля). Содержание механических примесей, определяемое как класс чистоты, не должно быть хуже 11-го для оборудования напряжением до 220 кВ и хуже 9-го для оборудования напряжением выше 220 кВ. При этом показатели пробивного напряжения трансформаторных масел в зависимости от рабочего напряжения оборудования должны быть равны (кВ):

Таблица: «Показатели пробивного напряжения трансформаторных масел в зависимости от рабочего напряжения оборудования, кВ»

Рабочее напряжение оборудования Пробивное напряжение масла, кВ
До 15 (вкл.)
Свыше 15 до 35 (вкл.)
От 60 до 150 (вкл.)
От 220 до 500 (вкл.)

Непосредственно после заливки трансформаторных масел в оборудование допустимые значения пробивного напряжения на 5 кВ ниже, чем у масла до заливки. Допускается ухудшение класса чистоты на единицу и увеличение содержания воздуха на 0,5 %.

В этом же РД указаны значения показателей трансформаторного масла, по которым состояние эксплуатационного масла оценивается как нормальное. При превышении этих значений должны быть приняты меры по восстановлению масла или устранению причины ухудшения показателя. Помимо этого даны значения показателей, при которых масло подлежит замене. В табл. 5.4 приведены требования к эксплуатационным маслам. Сорбенты в термосифонных и адсорбционных фильтрах трансформаторов согласно РД 34.20.501-95 "Правила технической эксплуатации электрических станций и сетей Российской Федерации" следует заменять в трансформаторах мощностью свыше 630 кВ·А при кислотном числе масла более 0,1 мг КОН/г, а также при появлении в масле растворенного шлама, водорастворимых кислот и (или) повышении тангенса угла диэлектрических потерь выше эксплуатационной нормы. В трансформаторах мощностью до 630 кВ·А адсорбенты в фильтрах заменяют во время ремонта или при эксплуатации при ухудшении характеристик твердой изоляции. Содержание влаги в сорбенте перед загрузкой в фильтры не должно превышать 0,5 %. [9]

Свойства :

1. Кислотное число ГОСТ 5985 — количество миллиграмм гидроксида калия (KOH), необходимое для нейтрализации всех кислых компонентов, содержащихся в 1 г исследуемого вещества. Кислотное число является мерой суммы карбоновых кислот в органическом соединении, таком как жирные кислоты, или в смеси соединений. Обычно, известное количество образца, растворённого в органическом растворителе (чаще всего - в смеси полярного и неполярного растворителей) титруют раствором гидроксида калия с известной концентрацией и фенолфталеином в качестве индикатора.

Показатель осадка и кислотное число для масла марки ТК определяют по ГОСТ 981 при следующих условиях:
температура - 120 °С,
катализатор - медная пластинка,
расход кислорода - 200 см3/мин,
длительность окисления при определении осадка и кислотного числа - 14 ч.

2. Температура вспышки ГОСТ 6356— наименьшая температура горючего вещества, при которой пары над поверхностью горючего вещества способны вспыхивать при контакте с открытым источником огня; устойчивое горение при этом не возникает. Вспышка — быстрое сгорание газопаровоздушной смеси над поверхностью горючего вещества, сопровождающееся кратковременным видимым свечением. Как правило, при отсутствии указания на метод измерения используется метод Пенски-Мартенса.

3. Температура застывания ГОСТ 20287 определяется в статических условиях (в пробирке) и не характеризует надежно подвижность масла при низкой температуре в условиях эксплуатации. Характеристикой подвижности масел при низкой температуре служит вязкость при соответствующей температуре, верхний предел которой зависит от условий эксплуатации и конструкции механизмов. Применение присадок позволяет снизить температуру застывания масел. Данные по температуре застывания масел необходимы при проведении нефтескладских операций (слив, налив, хранение). [10]

4. Стабильность против окисления ГОСТ 981, т. е. способность масла сохранять параметры при длительной работе.[10]

Стабильность против окисления масел марок Т-750 и Т-1500 определяют по ГОСТ 981 при следующих условиях:

температура для масла марки Т-750 - 130 °С, для масла марки Т-1500 - 135 °С,
катализатор - медная пластинка,
расход кислорода - 50 см3/мин,
длительность окисления - 30 ч.

5. Вязкость кинематическая, м2/с (сСт) ГОСТ 33-чрезвычайно важный показатель определения эффективности эксплуатации узлов трения, систем охлаждения, прокачиваемости масла в системах смазки ирегулирования. Характеризует хим. состав и изменения структуры и состав масла в процессе эксплуатации. Повышенная вязкость масла увеличивает потери мощности на трение, ухудшает теплообмен; недостаточная в. Повышает износ трущихся деталей и потери масла вследствие вытекания его через зазоры в механизмах. С повышением температуры в. снижается, с понижением растет.

6. Диэлектрическими потерями называют энергию, рассеиваемую в электроизоляционном материале под воздействием на него электрического поля. Способность диэлектрика рассеивать энергию в электрическом поле обычно характеризуют углом диэлектрических потерь, а также тангенсом угла диэлектрических потерь ГОСТ 6381. При испытании диэлектрик рассматривается как диэлектрик конденсатора, у которого измеряется емкость и угол δ, дополняющий до 90° угол сдвига фаз между током и напряжением в емкостной цепи. Этот угол называется углом диэлектрических потерь.[10]

Тангенс угла диэлектрических потерь трансформаторных масел определяют без подготовки или после подготовки одним из следующих способов:
а) 100 см3 масла выдерживают 30 мин при 50 °С при остаточном давлении 666,6 Па (5 мм рт.ст.) в сосуде со свободной поверхностью, равной 100 см2;
б) масло выдерживают в кристаллизаторе, помещенном в эксикатор с прокаленным хлористым кальцием, не менее 12 ч при толщине слоя не более 10 мм.
При разногласиях, возникающих при оценке качества продукции, подготовку масла перед определением тангенса угла диэлектрических потерь проводят по подпункту а.
Для определения тангенса угла диэлектрических потерь применяют электроды, изготовленные из нержавеющей стали марки 12Х18Н9Т или 12Х18Н10Т по ГОСТ 5632. При изготовлении электродов из меди по ГОСТ 859 и латуни по ГОСТ 17711 рабочие поверхности электродов должны покрываться никелем, хромом или серебром. Определение проводят при напряженности электрического поля 1 кВ/мм.

7. Плотностью ρ (ГОСТ 3900)- называется величина, определяемая отношением массы вещества к занимаемому им объему. Обычно для масел используется показатель относительной плотности жидкости, т. е. отношение плотности масла при 20 °С к плотности воды при 4 °С. Поскольку масса эталонного килограмма практически равна массе 1 дм3 воды при 4 °С, значения плотности и относительной плотности практически совпадают.

8. Летучие жирные кислоты (volatile fatty acid, short certain fatty acids, SCFA) ГОСТ 6307— низкомолекулярные карбоновые кислоты с длиной цепи до 8 атомов углерода, способные при кипячении улетучиваться с водяным паром. К ним относят уксусную, пропионовую, масляную, изомасляную, валериановую, капроновую и др. кислоты.

Показатель низкомолекулярных летучих кислот допускается определять при условиях:
температура - 120 °С,
катализатор - шарики диаметром (5±1) мм, один из низкоуглеродистой стали, один из меди марки МОк или М1к по ГОСТ 859;
расход воздуха - 50 см3/мин,
длительность окисления - 6ч.

9. Испытание на медной пластине ГОСТ 2917 является универсальным способом оценки коррозионной активности моторных топлив, зависящей от общего содержания активных соединений серы. Проверка коррозионных свойств бензина сводится к следующему (ГОСТ 6321-69): отполированную пластинку из чистой электролитической меди погружают в испытуемое топливо и выдерживают три часа при 50°С или сутки при комнатной температуре. Бензин не соответствует требованием, если после испытания пластинка покрывается черными пятнами или темно-серым налетом. Коррозия резервуаров, цистерн, топливных баков, трубопроводов, деталей топливоподающей аппаратуры происходит при наличии в топливе коррозионно-агрессивных соединений, таких как водорастворимые (минеральные) кислоты и щелочи, активные сернистые соединения, вода, низкомолекулярные органические кислоты. [11]

Комплект для испытаний коррозионной активности на медной пластине используется при проведении испытаний топлив в соответствии с ГОСТ 6321, ISO 2160, ASTM D130, IP154 “Топливо для двигателей. Метод испытаний на медной пластинке”. [10]

Назначение трансформаторного масла [6]

В большинстве трансформаторов, применяемых для энергоснабжения, используется трансформаторное масло, получаемое из нефти. И только часть распределительных трансформаторов заполняется негорючей синтетической жидкостью и часть выполняется в сухом виде, т. е. без заполнения жидким диэлектриком. Как правило, все трансформаторы номинального напряжения выше 35 кВ заполняются трансформаторным маслом. Масло в трансформаторе выполняет две функции: электрической изоляции и передачи тепла от активной части трансформатора к устройствам охлаждения. В качестве диэлектрика трансформаторное масло используется в трех основных типах изоляционных конструкций:

— Чисто масляные промежутки, например, между контактами переключающих устройств.

— Масляные промежутки в комбинации с пропитанной маслом твердой изоляцией.

Например, изоляция между обмотками, имеющими твердую витковую изоляцию и масляный промежуток, подразделенный барьерами из пропитанного маслом электротехнического картона.

— Пропитанная маслом твердая изоляция, например между витками обмотки и в высоковольтных конденсаторных вводах с бумажно-масляной изоляцией. Потери энергии в трансформаторе вызывают нафтен обмоток, магнитной системы, а также деталей конструкции. Нагрев ограничен передачей тепла в окружающее пространство. Благодаря относительно малой вязкости и высокой теплоемкости трансформаторное масло является хорошим переносчиком тепла от наиболее нагретых частей трансформатора к его охлаждающим устройствам.

Трансформаторное масло получают перегонкой и последующей очисткой сырой нефти Оно представляет собой смесь углеводородов в пропорциях в зависимости от месторождения нефти. Углеводороды, грубо говоря, делятся на три класса: нафтеновые, парафиновые и ароматические. Нафтеновые и парафиновые являются насыщенными углеводородами, химически стабильными. Они отличаются друг от друга химической структурой, а также физическими и химическими свойствами. Ароматические — являются ненасыщенными углеводородами и поэтому они менее стабильны и более химически активны.
Применяемая за рубежом классификация масел как нафтеновых или парафиновых не означает, что эти масла состоят исключительно из нафтеновых или парафиновых углеводородов, а указывает на преобладание характеристик одного из этих классов в смеси нафтеновых, парафиновых и ароматических углеводородов. Источники нафтеновой нефти встречаются все реже и имеется тенденция все более частого применения парафиновой нефти. Это не приводит к каким либо отрицательным последствиям за исключением возможного повышения температуры застывания, что устраняется с помощью специальных добавок. Трансформаторное масло при работе в трансформаторах подвергается тепловому старению, при этом происходит окисление масла и выделение шлама. За последние десятилетия технологические процессы получения масла были значительно усовершенствованы и позволили увеличить срок эксплуатации масла.

Масла разных изготовителей (разных марок) допускают смешивание в любой пропорции. Для повышения стабильности масла в него добавляют антиокислительные добавки — ингибиторы. Все марки отечественных масел имеют в своем составе ингибиторы. Однако современные масла, благодаря совершенной технологии их изготовления, могут быть высокостабильными и не требовать добавки ингибиторов. Для такого масла может потребоваться введение в него ингибиторов только в случаях трансформаторов с тяжелым режимом работы, например, для очень больших трансформаторов.[6]

Ассортимент трансформаторных масел[2]

Нефтеперерабатывающая промышленность выпускает несколько сортов трансформаторных масел (таблица). Они различаются по используемому сырью и способу получения.

трансформаторное масло - ТКп (ТУ 38.101890-81) вырабатывают из малосернистых нафтеновых нефтей методом кислотно-щелочной очистки. Содержит присадку ионол. Рекомендуемая область применения - оборудование напряжением до 500 кВ включительно.

трансформаторное масло - Масло селективной очистки (ГОСТ 10121-76) производят из сернистых парафинистых нефтей методом фенольной очистки с последующей низкотемпературной депарафинизацией; содержит присадку ионол. Рекомендуемая область применения - оборудование напряжением до 220 кВ включительно.

трансформаторное масло - Масло Т-1500У (ТУ 38.401-58-107-97) вырабатывают из сернистых парафинистых нефтей с использованием процессов селективной очистки и гидрирования. Содержит присадку ионол. Обладает улучшенной стабильностью против окисления, имеет невысокое содержание сернистых соединений, низкое значение тангенса угла диэлектрических потерь. Рекомендовано к применению в электрооборудовании напряжением до 500 кВ и выше.

трансформаторное масло - Масло ГК (ТУ 38.1011025-85) вырабатывают из сернистых парафинистых нефтей с использованием процесса гидрокрекинга. Содержит присадку ионол. Полностью удовлетворяет требованиям стандарта МЭК 296 к маслам класса IIА. Обладает хорошими диэлектрическими свойствами, высокой стабильностью против окисления и рекомендовано к применению в электрооборудовании высших классов напряжении.

трансформаторное масло - Масло ВГ (ТУ 38.401978-98) вырабатывают из парафинистых нефтей с применением гидрокаталитических процессов. Содержит присадку ионол. Удовлетворяет требованиям стандарта МЭК 296 к маслам класса IIА. Обладает хорошими диэлектрическими свойствами, высокой стабильностью против окисления и рекомендовано к применению в электрооборудовании высших классов напряжений. [8]

трансформаторное масло - Масло АГК (ТУ 38.1011271-89) вырабатывают из парафинистых нефтей с применением гидрокаталитических процессов. Содержит присадку ионол. По низкотемпературной вязкости и температуре вспышки является промежуточным между маслами классов IIА и IIIА стандарта МЭК 296. Обладает хорошими диэлектрическими свойствами, высокой стабильностью против окисления. Предназначено для применения в трансформаторах арктического исполнения.

трансформаторное масло - Масло МВТ (ТУ 38.401927-92) вырабатывают из парафинистых нефтей с применением гидрокаталитических процессов. Содержит присадку ионол. Удовлетворяет требованиям стандарта МЭК 296 к маслам класса IIIА. Обладает уникальными низкотемпературными свойствами, низким тангенсом угла диэлектрических потерь и высокой стабильностью против окисления. Рекомендовано к применению в масляных выключателях и трансформаторах арктического исполнения.

На энергопредприятиях применяются отечественные масла следующих марок:

ТКп (ТУ 38.101.890-81) - кислотной очистки из анастасиевской и бакинских нефтей;

Т-750 (ГОСТ 982-80) - кислотно-щелочной очистки и контактной доочистки из анастасиевской нефти;

T-I500 (ГОСТ 982-80) кислотно-щелочной очистки, карбамидной депарафинизации и контактной доочистки из бакинских нефтей;

ТАп (ТУ 38.1O1.0281--80) адсорбционной очистки из анастасиевской нефти;

ТСп (ГОСТ 10121-76) селективной очистки, низкотемпературной депарафинизации, контактной или гидроочистки из западно-сибирских нефтей;

ГК (ТУ 38.101.1025-85) гидрокрекинга и каталитической депарафинизации из западно-сибирских нефтей;

ГБ (ТУ 38.401.657-87) селективной очистки каталитической депарафинизации из бакинских нефтей;

АГК (ТУ 38.401.608-86) каталитической депарафинизации остаточной фракция глубокого гидрирования легкого газойля каталитического крекинга из западно-сибирских нефтей;

MB (ТУ 38.101.857-80) кислотно-щелочной очистки из специальных дистиллятов бакинских нефтей (предназначено для использования только в масляных выключателях) ; марки масел, изготовленных по старым РОСТ и ТУ такие как: ТКп (ГОСТ 982-68), ТК (ГОСТ 982-56) без присадки, Т-750 (ГОСТ 5.I7IO-72), AТM-65 (ТУ 38.101 Л69-79) арктическое и другие.

Таблица

Наши рекомендации