Явление резонанса

Явление резонанса относится к наиболее важным с практической точки зрения свойствам электрических цепей. Оно заключается в том, что электрическая цепь, имеющая реактивные элементы обладает чисто резистивным сопротивлением.

Общее условие резонанса для любого двухполюсника можно сформулировать в виде Im[Z]=0 или Im[Y]=0, где Z и Y комплексное сопротивление и проводимость двухполюсника. Следовательно, режим резонанса полностью определяется параметрами электрической цепи и не зависит от внешнего воздействия на нее со стороны источников электрической энергии.

Для определения условий возникновения режима резонанса в электрической цепи нужно:

найти ее комплексное сопротивление или проводимость;

выделить мнимую часть и приравнять нулю.

Все параметры электрической цепи, входящие в полученное уравнение, будут в той или иной степени влиять на характеристики явления резонанса.

Уравнение Im[Z]=0 может иметь несколько корней решения относительно какого-либо параметра. Это означает возможность возникновения резонанса при всех значениях этого параметра, соответствующих корням решения и имеющих физический смысл.

В электрических цепях резонанс может рассматриваться в задачах:

анализа этого явления при вариации параметров цепи;

синтеза цепи с заданными резонансными параметрами.

Электрические цепи с большим количеством реактивных элементов и связей могут представлять значительную сложность при анализе и почти никогда не используются для синтеза цепей с заданными свойствами, т.к. для них не всегда возможно получить однозначное решение. Поэтому на практике исследуются простейшие двухполюсники и с их помощью создаются сложные цепи с требуемыми параметрами.

Простейшими электрическими цепями, в которых может возникать резонанс, являются последовательное и параллельное соединения резистора, индуктивности и емкости. Соответственно схеме соединения, эти цепи называются последовательным и параллельным резонансным контуром. Наличие резистивного сопротивления в резонансном контуре по определению не является обязательным и оно может отсутствовать как отдельный элемент (резистор). Однако при анализе резистивным сопротивлением следует учитывать по крайней мере сопротивления проводников.

Последовательный резонансный контур представлен на рис. 1 а). Комплексное сопротивление цепи равно

Явление резонанса - student2.ru Явление резонанса - student2.ru

Явление резонанса - student2.ru

Таким образом, резонанс в цепи наступает независимо от значения резистивного сопротивления R когда индуктивное сопротивление xL = w L равно емкостному xC = 1/(w C) . Как следует из выражения (2), это состояние может быть получено вариацией любого их трех параметров - L, C и w , а также любой их комбинацией. При вариации одного из параметров условие резонанса можно представить в виде

Явление резонанса - student2.ru

Все величины, входящие в выражение (3) положительны, поэтому эти условия выполнимы всегда, т.е. резонанс в последовательном контуре можно создать

изменением индуктивности L при постоянных значениях C и w ;

изменением емкости C при постоянных значениях L и w ;

изменением частоты w при постоянных значениях L и C.

Наибольший интерес для практики представляет вариация частоты. Поэтому рассмотрим процессы в контуре при этом условии.

При изменении частоты резистивная составляющая комплексного сопротивления цепи Z остается постоянной, а реактивная изменяется. Поэтому конец вектора Z на комплексной плоскости перемещается по прямой параллельной мнимой оси и проходящей через точку R вещественной оси (рис. 1 б)). В режиме резонанса мнимая составляющая Z равна нулю и Z = Z = Zmin = R , j = 0 , т.е. полное сопротивление при резонансе соответствует минимальному значению

Явление резонанса - student2.ru Индуктивное и емкостное сопротивления изменяются в зависимости от частоты так, как показано на рис. 2. При частоте стремящейся к нулю xC ® µ , xL ® 0 , и j ® - 90° (рис. 1 б)). При бесконечном увеличении частоты - xL ® µ , xC ® 0 , а j ® 90° . Равенство сопротивлений xL и xC наступает в режиме резонанса при частоте w0 .

Рассмотрим теперь падения напряжения на элементах контура. Пусть резонансный контур питается от источника, обладающего свойствами источника ЭДС, т.е. напряжение на входе контура u = const, и пусть ток в контуре равен i=Imsinw t. Падение напряжения на входе уравновешивается суммой напряжений на элементах

Явление резонанса - student2.ru

Переходя от амплитудных значений к действующим, из выражения (4) получим напряжения на отдельных элементах контура

Явление резонанса - student2.ru

а при резонансной частоте

Явление резонанса - student2.ru

Наши рекомендации