РГР - 2 Кінематичний аналіз плоского важільного механізму

Умова завдання. Задана кінематична схема плоского важільного механізму (таблиця 2).

Потрібно:

1) Побудувати кінематичну схему механізму в заданому положенні.

2) Побудувати план швидкостей. Визначити швидкості точок А, В, S2 механізму і кутові швидкості ланок 2 і 3.

3) Побудувати план прискорень. Визначити прискорення точок А, В і S2 механізму і кутові прискорення ланок 2 і 3.

Додаткові умови: ведуча ланка - ланка ОА; кутова швидкість ведучої ланки w1=const; розміри ланок дорівнюють РГР - 2 Кінематичний аналіз плоского важільного механізму - student2.ru ; точка S2 знаходиться посередині ланки 2.

Таблиця 2

    РГР - 2 Кінематичний аналіз плоского важільного механізму - student2.ru   РГР - 2 Кінематичний аналіз плоского важільного механізму - student2.ru
  РГР - 2 Кінематичний аналіз плоского важільного механізму - student2.ru   РГР - 2 Кінематичний аналіз плоского важільного механізму - student2.ru
  РГР - 2 Кінематичний аналіз плоского важільного механізму - student2.ru   РГР - 2 Кінематичний аналіз плоского важільного механізму - student2.ru

Таблиця 2 (продовження)

  РГР - 2 Кінематичний аналіз плоского важільного механізму - student2.ru   РГР - 2 Кінематичний аналіз плоского важільного механізму - student2.ru
  РГР - 2 Кінематичний аналіз плоского важільного механізму - student2.ru   РГР - 2 Кінематичний аналіз плоского важільного механізму - student2.ru
  РГР - 2 Кінематичний аналіз плоского важільного механізму - student2.ru   РГР - 2 Кінематичний аналіз плоского важільного механізму - student2.ru
  РГР - 2 Кінематичний аналіз плоского важільного механізму - student2.ru   РГР - 2 Кінематичний аналіз плоского важільного механізму - student2.ru

Таблиця 2 (продовження)

  РГР - 2 Кінематичний аналіз плоского важільного механізму - student2.ru   РГР - 2 Кінематичний аналіз плоского важільного механізму - student2.ru
  РГР - 2 Кінематичний аналіз плоского важільного механізму - student2.ru   РГР - 2 Кінематичний аналіз плоского важільного механізму - student2.ru
  РГР - 2 Кінематичний аналіз плоского важільного механізму - student2.ru   РГР - 2 Кінематичний аналіз плоского важільного механізму - student2.ru
  РГР - 2 Кінематичний аналіз плоского важільного механізму - student2.ru   РГР - 2 Кінематичний аналіз плоского важільного механізму - student2.ru

Таблиця 2 (продовження)

  РГР - 2 Кінематичний аналіз плоского важільного механізму - student2.ru   РГР - 2 Кінематичний аналіз плоского важільного механізму - student2.ru
  РГР - 2 Кінематичний аналіз плоского важільного механізму - student2.ru   РГР - 2 Кінематичний аналіз плоского важільного механізму - student2.ru
  РГР - 2 Кінематичний аналіз плоского важільного механізму - student2.ru   РГР - 2 Кінематичний аналіз плоского важільного механізму - student2.ru
  РГР - 2 Кінематичний аналіз плоского важільного механізму - student2.ru   РГР - 2 Кінематичний аналіз плоского важільного механізму - student2.ru

Приклад розв’язання РГР - 2

На рис.2.1 зображена кінематична схема плоского важільного механізму у заданому положенні.

РГР - 2 Кінематичний аналіз плоского важільного механізму - student2.ru     Рис. 2.1 Дано: ОА – ведуча ланка, w1 – кутова швидкість ланки ОА; e1 – кутове прискорення ланки ОА; РГР - 2 Кінематичний аналіз плоского важільного механізму - student2.ru РГР - 2 Кінематичний аналіз плоского важільного механізму - student2.ru – задані розміри.   Потрібно: 1) Побудувати запропоновану кінематичну схему механізму в заданому положенні.   2) Побудувати план швидкостей. Визначити швидкості точок А, В, D механізму і кутові швидко-сті ланок 2 і 3.   3) Побудувати план прискорень. Визначити прискорення точок А, В і D механізму і кутові приско-рення ланок 2 і 3.

Розв'язок

1. Побудова кінематичної схеми механізму.

Для проведення кінематичного аналізу механізму побудуємо окремо його кінематичну схему в заданому положенні, користуючись умовним масштабом m l (рис.2.2,а). *

2. Побудова плану швидкостей. Визначення швидкостей точок А, В, D механізму і кутових швидкостей ланок 2 і 3.

Побудову плану швидкостей виконуємо у послідовності:

- побудова векторів швидкостей особливих точок (за особливі точки приймаємо точки рухомого поєднання ланок, тобто пов’язані з кінематичними парами);

- побудова векторів швидкостей інших точок, що належать механізму і потребують визначення.

а) Визначимо швидкість точки А , як точки, яка належить кривошипу ОА, що обертається навколо нерухомого центра О з кутовою швидкістю w1:

РГР - 2 Кінематичний аналіз плоского важільного механізму - student2.ru , (м/с) (2.1)

Вектор РГР - 2 Кінематичний аналіз плоского важільного механізму - student2.ru перпендикулярний до кривошипа ОА і спрямований в бік його обертання. Швидкість РГР - 2 Кінематичний аналіз плоского важільного механізму - student2.ru зображаємо на плані швидкостей в масштабі m v відрізком ра, приймаючи ра = 50¸60 мм. Тоді масштабний коефіцієнт швидкостей обчислимо за допомогою (2.2):

РГР - 2 Кінематичний аналіз плоского важільного механізму - student2.ru , РГР - 2 Кінематичний аналіз плоского важільного механізму - student2.ru (2.2)

Із довільної точки р, прийнятої за полюс плану швидкостей, відкладаємо перпендикулярно до ланки ОА вектор РГР - 2 Кінематичний аналіз плоского важільного механізму - student2.ru (рис.2.2,б). Цей вектор є вектором швидкості РГР - 2 Кінематичний аналіз плоского важільного механізму - student2.ru .

б) Визначимо швидкість точки В, яка належить кінематичній парі, що з’єднує ланки 2 і 3. Запишемо 2 векторних рівняння:

РГР - 2 Кінематичний аналіз плоского важільного механізму - student2.ru , (2.3)

де РГР - 2 Кінематичний аналіз плоского важільного механізму - student2.ru

Розв’язуємо систему рівнянь (2.3) графічно. Для цього через точку а проведемо пряму, перпендикулярну до АВ, а через точку с, яка збігається з полюсом р, проведемо пряму, перпендикулярну до ВС. На перетині цих перпендикулярів відмічаємо точку в. Вектор РГР - 2 Кінематичний аналіз плоского важільного механізму - student2.ru зображає абсолютну швидкість точки В. Напрям швидкості РГР - 2 Кінематичний аналіз плоского важільного механізму - student2.ru визначається напрямком вектора РГР - 2 Кінематичний аналіз плоского важільного механізму - student2.ru . Вектор РГР - 2 Кінематичний аналіз плоского важільного механізму - student2.ru зображає швидкість РГР - 2 Кінематичний аналіз плоского важільного механізму - student2.ru точки В у відносному обертанні навколо точки А.

в) Швидкість точки D знайдемо з векторних рівнянь:

РГР - 2 Кінематичний аналіз плоского важільного механізму - student2.ru . (2.4)

Розв’язуємо цю систему рівнянь графічно. Через точку а проведемо пряму, перпендикулярну до DА, а через точку в – пряму, перпендикулярну до DB. На перетині цих перпендикулярів відмічаємо точку d. Вектор РГР - 2 Кінематичний аналіз плоского важільного механізму - student2.ru відображає абсолютну швидкість РГР - 2 Кінематичний аналіз плоского важільного механізму - student2.ru .

План швидкостей побудовано.*

г) Використовуючи план швидкостей, знаходимо величини швидкостей точок і кутових швидкостей ланок.

Лінійні швидкості точок, (м/с):

РГР - 2 Кінематичний аналіз плоского важільного механізму - student2.ru (2.5)

Кутові швидкості ланок 2 і 3 , (рад/с):

РГР - 2 Кінематичний аналіз плоского важільного механізму - student2.ru (2.6)

Визначимо напрями кутових швидкостей w2 і w3. Для цього умовно переносимо вектор РГР - 2 Кінематичний аналіз плоского важільного механізму - student2.ru в точку В і розглянемо рух точки В відносно точки А. Знаходимо, що w2 спрямована за годинниковою стрілкою. Аналогічно, переносимо вектор РГР - 2 Кінематичний аналіз плоского важільного механізму - student2.ru в точку В і розглянемо рух точки В відносно точки С. Бачимо, що w3 також спрямована за годинниковою стрілкою. Наносимо ці напрями кутових швидкостей на план механізму (рис.2.2,а).

3. Побудова плану прискорень. Визначення прискорень точок А, В, D механізму і кутових прискорень ланок 2 і 3.

Побудову плану прискорень виконуємо у послідовності:

- побудова векторів прискорень особливих точок (точки рухомого поєд-нання ланок);

- побудова векторів прискорень інших точок, що належать механізму і потребують визначення.

а) Визначимо прискорення точки А , як точки, яка належить кривошипу ОА, що обертається з миттєвою кутовою швидкістю w1 і кутовим прискоренням e1.

Повне прискорення точки А дорівнює геометричній сумі нормального та тангенціального прискорень:

РГР - 2 Кінематичний аналіз плоского важільного механізму - student2.ru (2.7)

Модулі цих прискорень знайдемо за формулами:

РГР - 2 Кінематичний аналіз плоского важільного механізму - student2.ru (м/с2) (2.8)

РГР - 2 Кінематичний аналіз плоского важільного механізму - student2.ru (м/с2) (2.9)

Зображаємо прискорення РГР - 2 Кінематичний аналіз плоского важільного механізму - student2.ru відрізком pn1. Приймаємо pn1=70¸80мм. Тоді масштабний коефіцієнт прискорень:

РГР - 2 Кінематичний аналіз плоского важільного механізму - student2.ru , РГР - 2 Кінематичний аналіз плоского важільного механізму - student2.ru (2.10)

З довільної точки p, прийнятої за полюс плану прискорень, відкладаємо вектор РГР - 2 Кінематичний аналіз плоского важільного механізму - student2.ru , спрямований паралельно ланці ОА від точки А до точки О. Через точку n1 проводимо вектор РГР - 2 Кінематичний аналіз плоского важільного механізму - student2.ru , який в масштабі РГР - 2 Кінематичний аналіз плоского важільного механізму - student2.ru зображає прискорення РГР - 2 Кінематичний аналіз плоского важільного механізму - student2.ru . Довжину відрізка n1а знаходимо за формулою:

РГР - 2 Кінематичний аналіз плоского важільного механізму - student2.ru , (мм) (2.11)

Цей вектор, перпендикулярний до ОА, і спрямований за напрямком кутового прискорення e1. З’єднавши прямою точки p і а, отримаємо вектор РГР - 2 Кінематичний аналіз плоского важільного механізму - student2.ru . Цей вектор є вектором повного прискорення точки А.

б) Визначимо прискорення точки В, як точки, яка належить водночас ланкам 2 і 3, що виконують плоско-паралельний рух.*

Запишемо два векторних рівняння:

РГР - 2 Кінематичний аналіз плоского важільного механізму - student2.ru (2.12)

Прискорення аС=0, тому що точка С нерухома.

Величини нормальних прискорень обчислюються за формулами:

РГР - 2 Кінематичний аналіз плоского важільного механізму - student2.ru (м/с2); РГР - 2 Кінематичний аналіз плоского важільного механізму - student2.ru (м/с2) (2.13)

В прийнятому масштабі ці прискорення зобразимо відрізками аn2 і pn3.

Величини цих відрізків дорівнюють:

РГР - 2 Кінематичний аналіз плоского важільного механізму - student2.ru , (мм); РГР - 2 Кінематичний аналіз плоского важільного механізму - student2.ru , (мм) (2.14)

Розв’язуємо систему (2.12) графічно. З точки авідкладаємо відрізокаn2, який зображає вектор РГР - 2 Кінематичний аналіз плоского важільного механізму - student2.ru . Відрізок аn2 проводимо паралельно до ланки АВ в напрямі від точки В до точки А. Через точку n2 проводимо перпендикулярно до АВ пряму, по якій буде спрямований вектор РГР - 2 Кінематичний аналіз плоского важільного механізму - student2.ru . Відповідно другому рівнянню системи (2.12) з полюса p паралельно ВС в напрямі від В до С відкладаємо відрізок pn3. Через точку n3 перпендикулярно до ВС проводимо пряму, по якій буде спрямований вектор РГР - 2 Кінематичний аналіз плоского важільного механізму - student2.ru до перетину в точці в з прямою, по якій спрямований вектор РГР - 2 Кінематичний аналіз плоского важільного механізму - student2.ru . Відрізок pв зображає вектор РГР - 2 Кінематичний аналіз плоского важільного механізму - student2.ru прискорення точки В. Відрізки n2в і n3в – тангенціальні прискорення РГР - 2 Кінематичний аналіз плоского важільного механізму - student2.ru , РГР - 2 Кінематичний аналіз плоского важільного механізму - student2.ru . З’єднавши прямою точки а і в, отримаємо відрізок ав, що зображає вектор РГР - 2 Кінематичний аналіз плоского важільного механізму - student2.ru .

в) Прискорення точки D знаходиться побудовою РГР - 2 Кінематичний аналіз плоского важільного механізму - student2.ru , подібного РГР - 2 Кінематичний аналіз плоского важільного механізму - student2.ru і з подібним розташуванням вершин, тому що теорема подібності, сформульована для плану швидкостей, справедлива і для плану прискорень.

З плану прискорень визначаємо величини прискорень, (м/с2):

РГР - 2 Кінематичний аналіз плоского важільного механізму - student2.ru РГР - 2 Кінематичний аналіз плоского важільного механізму - student2.ru РГР - 2 Кінематичний аналіз плоского важільного механізму - student2.ru (2.15)

г) Величини кутових прискорень e2 і e3 знаходимо з формул:

РГР - 2 Кінематичний аналіз плоского важільного механізму - student2.ru , (рад/с2) ; РГР - 2 Кінематичний аналіз плоского важільного механізму - student2.ru , (рад/с2) (2.16)

Визначаємо напрями кутових прискорень e2 і e3. Умовно перенесемо вектор РГР - 2 Кінематичний аналіз плоского важільного механізму - student2.ru в точку В і розглянемо рух точки В навколо точки А. Виходячи з цього, знаходимо, що прискорення e2 спрямовано проти ходу годинникової стрілки. Перенесемо вектор РГР - 2 Кінематичний аналіз плоского важільного механізму - student2.ru в точку В і розглянемо її рух навколо точки С. Бачимо, що e3 спрямовано також проти ходу годинникової стрілки. Наносимо ці кутові прискорення на план механізму (рис.2.2,а).

Графічна частина

РГР - 2 Кінематичний аналіз плоского важільного механізму - student2.ru

Рис.2.2

Наши рекомендации