Дисперсия случайной величины
Дисперсия случайной величины характеризует меру разброса случайной величины около ее математического ожидания.
Если случайная величина x имеет математическое ожидание Mx , то дисперсией случайной величины x называется величина Dx =M(x - Mx )2.
Легко показать, что Dx = M(x - Mx )2= Mx 2 - M(x )2.
Эта универсальная формула одинаково хорошо применима как для дискретных случайных величин, так и для непрерывных. Величина Mx 2 >для дискретных и непрерывных случайных величин соответственно вычисляется по формулам
, .
Для определения меры разброса значений случайной величины часто используется среднеквадратичное отклонение ,связанное с дисперсией соотношением .
Основные свойства дисперсии:
- дисперсия любой случайной величины неотрицательна, Dx 0;
- дисперсия константы равна нулю, Dc=0;
- для произвольной константы D(cx ) = c2D(x );
- дисперсия суммы двух независимых случайных величинравна сумме их дисперсий: D(x ± h ) = D(x ) + D (h ).
51) Функцией распределения называют функцию , определяющую вероятность того, что случайная величина примет значение, которое изображается на числовой оси точкой, лежащей левее точки х, т.е.
F(x)=P(X<x)
Иногда вместо термина «Функция распределения» используют термин «Интегральная функция».
Свойства функции распределения:
1. Значения функции распределения принадлежит отрезку [0;1]: 0 F(x) 1
2. F(x) - неубывающая функция, т.е. F(x2) F(x1), если x2>x1
Следствие 1. Вероятность того, что случайная величина примет значение, заключенное в интервале (a,b), равна приращению функции распределения на этом интервале:
P(a X<b)=F(b)-F(a) (7)
Пример 9. Случайная величина Х задана функцией распределения:
Найти вероятность того, что в результате испытания Х примет значение, принадлежащее интервалу (0;2): P(0<x<2)=F(2)-F(0)
Решение: Так как на интервале (0;2) по условию, F(x)=x/4+1/4, то F(2)-F(0)=(2/4+1/4)-(0/4+1/4)=1/2. Итак, P(0<x<2)=1/2
Следствие 2. Вероятность того, что непрерывная случайная величина Х примет одно определенное значение, равна нулю.
Следствие 3. Если возможные значения случайной величины принадлежат интервалу (а;b), то: 1) F(x)=0 при x a; 2) F(x)=1 при x b.
Справедливы следующие предельные соотношения:
График функции распределения расположен в полосе, ограниченной прямыми у=0, у=1 (первое свойство). При возрастании х в интервале (а;b), в котором заключены все возможные значения случайной величины, график «подымается вверх». При x a ординаты графика равны нулю; при x b ординаты графика равны единице:
Функцией распределения случайной величины Х называется функция F(x), выражающая для каждого х вероятность того, что случайная величина Х примет значение, меньшее х:
.
Функцию F(x) называют интегральной функцией распределения или интегральным законом распределения.
Способ задания непрерывной случайной величины с помощью функции распределения не является единственным. Необходимо определить некоторую функцию, отражающую вероятности попадания случайной точки в различные участки области возможных значений непрерывной случайной величины. Т. е. представить некоторую замену вероятностям pi для дискретной случайной величины в непрерывном случае.
Такой функцией является плотность распределения вероятностей. Плотностью вероятности (плотностью распределения, дифференциальной функцией) случайной величины Х называется функция f(x), являющаяся первой производной интегральной функции распределения:
.
54) Определение. Математическим ожиданием непрерывной случайной величины Х, возможные значения которой принадлежат отрезку [a,b], называется определенный интеграл
Если возможные значения случайной величины рассматриваются на всей числовой оси, то математическое ожидание находится по формуле:
При этом, конечно, предполагается, что несобственный интеграл сходится.
Определение. Дисперсией непрерывной случайной величины называется математическое ожидание квадрата ее отклонения.
По аналогии с дисперсией дискретной случайной величины, для практического вычисления дисперсии используется формула:
Определение. Средним квадратичным отклонениемназывается квадратный корень из дисперсии.