Упругие волны в сплошной среде

Механические возмущения, распространяющиеся в упругой среде с конечной скоростью, называются упругими или механическими волнами. Тела, которые, воздействуя на упругую среду, вызывают эти возмущения, называют источниками упругих волн.

Упругая волна называется продольной, если частицы среды колеблются в направлении распространения волны. Упругая волна называется поперечной, если частицы среды колеблются перпендикулярно направлению распространения волны. В жидкостях и газах упругие волны всегда продольные. В твердых телах могут распространяться и продольные, и поперечные волны.

Распространение в упругой среде механических возмущений, возбуждаемых источником волн, связано с переносом энергии. Поэтому такие волны называются бегущими волнами. Скорость распространения возмущений в среде v называется скоростью волны (фазовой скоростью). Скорость распространения упругих волн зависит от плотности и упругих свойств среды.

Линия, касательная к которой в каждой ее точке совпадает с направлением распространения волны, называется лучом. Геометрическое место точек, в которых фаза колебаний частиц среды имеет одно и то же значение, называется волновой поверхностью. В однородной среде волновые поверхности перпендикулярны лучам. В зависимости от формы волновых поверхностей различают плоские, сферические, цилиндрические и другие волны (рисунок 1.7).

Упругие волны в сплошной среде - student2.ru Рисунок 1.7 – Плоская и сферическая волны

Уравнение плоской волны, распространяющейся вдоль оси Ox (в положительном направлении), имеет вид:

Упругие волны в сплошной среде - student2.ru

Если волна распространяется в отрицательном направлении оси Ox, то:

Упругие волны в сплошной среде - student2.ru

Если колебания частиц в волне гармонические, то волна называется гармонической или монохроматической. Уравнение плоской гармонической волны, бегущей вдоль оси Ox, может быть записано в виде:

Упругие волны в сплошной среде - student2.ru .

Здесь A – амплитуда колебаний в волне, Упругие волны в сплошной среде - student2.ru - циклическая частота волны, Упругие волны в сплошной среде - student2.ru - волновое число, Упругие волны в сплошной среде - student2.ru - фаза волны.

Расстояние, на которое распространяется волна за время, равное периоду колебаний, называется длиной волны λ (м):

Упругие волны в сплошной среде - student2.ru

С учетом этого волновое число можно представить в виде:

Упругие волны в сплошной среде - student2.ru

График зависимости s(x) в плоской гармонической волне для некоторого момента времени t представлен на рисунке 1.8.

Упругие волны в сплошной среде - student2.ru
Рисунок 1.8 – Плоская гармоническая волна

В случае, когда плоская волна распространяется в произвольном направлении, ее уравнение имеет вид:

Упругие волны в сплошной среде - student2.ru

Здесь Упругие волны в сплошной среде - student2.ru - волновой вектор. Его модуль равен волновому числу k, а направление совпадает с направлением распространения волны в точке с радус-вектором Упругие волны в сплошной среде - student2.ru .

Экспоненциальная форма записи уравнения плоской волны:

Упругие волны в сплошной среде - student2.ru

Уравнение расходящейся сферической волны:

Упругие волны в сплошной среде - student2.ru

В случае монохроматической сферической волны:

Упругие волны в сплошной среде - student2.ru

Дифференциальное уравнение, описывающее распространение волн в однородной изотропной непоглощающей среде со скоростью v, называется волновым уравнением и имеет вид:

Упругие волны в сплошной среде - student2.ru

где Упругие волны в сплошной среде - student2.ru - оператор Лапласа.

Если волна гармоническая, то Упругие волны в сплошной среде - student2.ru , и волновое уравнерие принимает вид:

Упругие волны в сплошной среде - student2.ru

Это уравнение называется уравнением Гельмгольца.

Амплитуда, начальная фаза и частота волны определяются колебаниями в источнике волн. Фазовая скорость волны, как уже было сказано выше, зависит от физических свойств среды, в которой распространяется волна.

2 Звуковые волны в воздухе

Основные определения

Звуковыми волнами (звуком) называется процесс распространения упругих колебаний малой амплитуды в сплошной среде. Область среды, в которой распространяются звуковые волны, называется звуковым полем. При распространении звуковых волн в газах и жидкостях смещение частиц среды происходят в направлении распространения волн. Такие волны называются продольными.

Теория звука в ее классической форме строится на основе законов движения жидкости и газа с учетом ряда особенностей колебательных движений с малой амплитудой.

Движение жидкости и газа подчиняется законам гидро- и аэродинамики. Так как для жидкости и газа они записываются в одинаковой математической форме, то мы будем говорить об уравнениях гидродинамики, подразумевая под жидкостью также и газ.

Уравнения гидродинамики в общей форме являются нелинейными и весьма трудно поддаются решению. Однако путем ряда предположений можно привести их к более простой форме.

Перечислим основные упрощающие предположения, справедливые для звуковых волн в воздухе:

а) пренебрегаем вязкостью и теплопроводностью воздуха;

б) считаем воздух однородной, изотропной, линейной средой;

в) предполагаем, что амплитуды колебаний давления, плотности и температуры звуковой волны малы;

г) процессы сжатия и расширения в звуковой волне считаем адиабатическими.

Введем ряд обозначений.

Пусть ρ0 и Р0 – плотность и давление воздуха в состоянии равновесия.

Тогда при распространении звука в среде общее давление в произвольной точке равно:

Упругие волны в сплошной среде - student2.ru

Величину δp, которая в звуковых процессах в газах обычно мала по сравнению с Р0, будем обозначать далее через p = p(x, y, z, t) и называть звуковым давлением.

Соответственно для плотности:

Упругие волны в сплошной среде - student2.ru ,

где Упругие волны в сплошной среде - student2.ru <<1.

Величину Упругие волны в сплошной среде - student2.ru называют относительным изменением плотности.

Аналогично температуру среды можно представить в виде:

Т = Т0 + δТ (x, y, z, t)

где Упругие волны в сплошной среде - student2.ru << 1 - относительная акустическая добавка к температуре.

Наши рекомендации