Метод ранней диагностики трансформаторов
Блок – схема газового хроматографа[17]
Высота пика
го тока.
Хроматографический анализ газов, растворенных в масле, позволяет с высокой степенью достоверности диагностировать развивающиеся дефекты в трансформаторе, связанные с электрическими разрядами в изоляции и локальными перегревами. Так как при появлении местных нагревов или электрических разрядов масло и соприкасающаяся бумажная изоляция разлагаются, а образующиеся газообразные продукты растворяются в масле.
Содержание фурановых производных в трансформаторном масле косвенно может свидетельствовать о деструкции бумажной изоляции. Термолиз, окисление и гидролиз изоляции вызывают частичное разрушение макромолекул целлюлозы, приводят к образованию компонентов фуранового ряда, которые выделяются в трансформаторное масло.
Такие физико-химические показатели, как кислотное число, содержание водорастворимых кислот и щелочей, влагосодержание и газосодержание масла являются традиционными в практике эксплуатации силовых трансформаторов на протяжении многих лет. Применение хроматографического анализа газов, растворенных в масле, и показателей оценки состояния бумажной изоляции силовых трансформаторов в эксплуатации началось сравнительно недавно. Тем не менее, накоплен достаточно большой опыт применения хроматографического анализа газов, растворенных в масле силовых трансформаторов напряжением 110-750 кВ, для выявления дефектов в эксплуатации. Накопленный опыт позволяет сформулировать совокупность диагностических признаков, имеющих высокую достоверность, и определить вид и характер выявляемых ими дефектов.
С помощью хроматографического анализа газов в силовых трансформаторах можно обнаружить две группы дефектов: перегревы токоведущих соединений и элементов конструкции остова; электрические разряды в масле.
Для этого определяются концентрации семи газов: водорода (Н2), метана (СH4), ацетилена (С2Н2), этилена (С2H4), этана (С2Н6), оксида углерода (СО) и диоксида углерода (СО2). Используется подразделение газов на основные (ключевые) и характерные (сопутствующие).
При перегревах токоведущих соединений и элементов конструкции остова трансформатора основным газом является С2Н4 - в случае нагрева масла и бумажно-масляной изоляции свыше 500 °С и С2Н2 - при дуговом разряде. Характерными газами в обоих случаях являются Н2, СH4, и С2Н6.
При частичных разрядах в масле основным газом является Н2, характерными газами с малым содержанием - СН4 и С2H2.
При искровых и дуговых разрядах основными газами являются Н2 или С2H2, характерными газами с любым содержанием - СН4 и С2Н4.
При перегревах твердой изоляции основным газом является СО2. Следует также отметить, что сопутствующим показателем деструкции целлюлозной изоляции трансформатора является рост содержания оксида и диоксида углерода, растворенных в трансформатором масле. Наличие суммарной концентрации СО и СО2 более 1% может свидетельствовать о деградации целлюлозной изоляции.
Нужно отметить, что при анализе состава и концентраций растворенных в масле газов в целях диагностики эксплуатационного состояния силовых трансформаторов необходимо учитывать факторы, вызывающие их изменения.
К эксплуатационным факторам, вызывающим увеличение концентрации растворенных в масле газов, относятся:
остаточные концентрации газов проникших во время ремонта трансформатора, если не была проведена дегазация масла;
увеличение нагрузки трансформатора;
доливка маслом, бывшим в эксплуатации и содержащим растворенные газы;
проведение сварочных работ на баке и др.
К эксплуатационным факторам, вызывающим уменьшение концентрации растворенных в масле газов трансформаторов, относятся:
-уменьшение нагрузки трансформатора;
-дегазация масла;
-доливка дегазированным маслом;
-замена силикагеля и др.
Для диагностики развивающихся дефектов в силовых трансформаторах используются следующие основные критерии:
-критерий граничных концентраций;
-критерий скорости нарастания газов;
-критерий отношения пар характерных газов.
Суть методики критериев заключается в том, что выход значений параметров за установленные границы следует рассматривать как признак наличия дефектов, которые могут привести к отказу оборудования. Особенность метода хроматографического анализа газов заключается в том, что нормативно устанавливаются только граничные концентрации газов, достижение которых свидетельствует лишь о возможности развития дефектов в трансформаторе. Такие трансформаторы следует брать под особый контроль с учащенным отбором проб масла и проведением хроматографического анализа.
Критерий граничных концентраций позволяет выделить из общего количества трансформаторного парка трансформаторы с возможными развивающимися дефектами, а степень опасности развития дефекта определяется по относительной скорости нарастания концентрации газа (газов). Если относительная скорость нарастания концентрации газа (газов) превышает 10% в месяц, то дефект с читается быстроразвивающимся.
Характер развивающегося дефекта по результатам хроматографического анализа газов определяется по критериальным отношениям концентраций различных пар газов. Принято различать дефекты теплового и электрического характера. К первым относятся: возникновение короткозамкнутых контуров, повышенные нагревы изоляции, контактов, отводов, шпилек и других металлических конструкций остова и бака трансформатора. К дефектам электрического характера относятся разряды различной интенсивности. Естественно, развитие дефекта в трансформаторе может иметь смешанный характер. Анализ существующих методик оценки характера развивающихся дефектов (теплового или электрического характера) по результатам хроматографического анализа показывает, что в них имеются значительные различия как по виду, так и по количеству используемых отношений пар газов. Ниже приведены используемые отношения пар характерных газов основных существующих методик: Дорненбурга (Dornenburg`s method), Мюллера (Mailer's method), Роджерса (CEGB/Rogers Ratios), МЭК (IEC 60599), ВЭИ.
Методика Дорненбурга: CH2/H2, C2H2/C2H4, C2H6/C2H2, C2H2/CH4
Методика Мюллера: CH4/H2, C2H4/C2H6, CO/CO2, C2H6/C2H2
Методика Роджерса: CH4/H2, C2H2/C2H4, C2H4/C2H6, C2H6/CH4
Методика МЭК: CH4/H2, C2H2/C2H4, C2H4/C2H6
Методика ВЭИ: CH4/H2, C2H4/CH4, C2H6/CH4, C2H2/C2H4, C2H6/C2H2, C2H4/C2H6
Получаемые по отношению концентраций газов признаки имеют достаточно условную диагностическую ценность, так как они ориентированы на определение характера развивающегося дефекта после превышения установленных граничных концентраций хотя бы у одного углеводородного газа или водорода. Статистический анализ показал, что наибольшую диагностическую ценность имеет методика МЭК (ГЕС 60599), которая и рекомендована к применению.
Результаты хроматографического анализа растворенных газов в масле силового трансформатора являются показаниями для проведения внеочередных измерений сопротивления изоляции обмоток, тангенса угла диэлектрических потерь обмоток, сопротивления обмоток постоянному току, потерь холостого хода, тепловизионного контроля поверхностей бака трансформатора и системы охлаждения, а также проведения хроматографического анализа растворенных газов в масле бака контактора. По совокупности результатов измерений принимается решение о проведении дальнейших мероприятий с данным трансформатором (оставить трансформатор в работе с учащенным контролем, провести дегазацию масла, вывести трансформатор в ремонт и проч.).
Хроматографический анализ газов, растворенных в трансформаторном масле [13]
Необходимость контроля за изменением состава масла в процессе эксплуатации трансформаторов ставит вопрос о выборе такого аналитического метода, который смог бы обеспечить надежное качественное и количественное определение содержащихся в трансформаторном масле соединений. В наибольшей степени этим требованиям отвечает хроматография, представляющая собой комплексный метод, объединивший стадию разделения сложных смесей на отдельные компоненты и стадию их количественного определения. По результатам этих анализов проводится оценка состояния маслонаполненного оборудования.
Хроматографический анализ газов, растворенных в масле, позволяет выявить дефекты трансформатора на ранней стадии их развития, предполагаемый характер дефекта и степень имеющегося повреждения. Состояние трансформатора оценивается сопоставлением полученных при анализе количественных данных с граничными значениями концентрации газов и по скорости роста концентрации газов в масле. Этот анализ для трансформаторов напряжением 110 кВ и выше должен осуществляться не реже 1 раза в 6 месяцев.
Основными газами, характеризующими определенные виды дефектов в трансформаторе, являются: водород Н2, ацетилен С2Н2, этан С2Н6, метан СН4, этилен С2Н4, окись СО и двуокись СО2 углерода.
Водород характеризует дефекты электрического характера (частичные, искровые и дуговые разряды в масле); ацетилен - перегрев активных элементов; этан - термический нагрев масла и твердой изоляции обмоток в диапазоне температур до 300°С; этилен - высокотемпературный нагрев масла и твердой изоляции обмоток выше 300°С; окись и двуокись углерода - перегрев и разряды в твердой изоляции обмоток.
С помощью анализа количества и соотношения этих газов в трансформаторном масле можно обнаружить следующие дефекты в трансформаторе.
1. Перегревы токоведущих частей и элементов конструкции магнитопровода. Основные газы: этилен или ацетилен. Характерные газы: водород, метан и этан. Если дефектом затронута твердая изоляция, заметно возрастают концентрации окиси и двуокиси водорода.
Перегрев токоведущих частей может определяться: выгоранием контактов переключающих устройств; ослаблением крепления электростатического экрана; ослаблением и нагревом контактных соединений отводов обмотки низкого напряжения или шпильки проходного изолятора ввода; лопнувшей пайкой элементов обмотки; замыканием проводников обмотки и другими дефектами.
Перегрев элементов конструкции магнитопровода может определяться: неудовлетворительной изоляцией листов электротехнической стали; нарушением изоляции стяжных шпилек, ярмовых балок с образованием короткозамкнутого контура; общим нагревом и недопустимыми местными нагревами от магнитных полей рассеяния в ярмовых балках, бандажах, прессующих кольцах; неправильным заземлением магнитопровода и другими дефектами.
2. Дефекты твердой изоляции. Эти дефекты могут быть вызваны перегревом изоляции от токоведущих частей и электрическими разрядами в изоляции. При перегреве изоляции от токоведущих частей основными газами являются окись и двуокись углерода, их отношение СО2/СО, как правило, больше 13; характерными газами с малым содержанием являются водород, метан, этилен и этан; ацетилен, как правило, отсутствует.
При разрядах в твердой изоляции основными газами являются ацетилен и водород, а характерными газами любого содержания - метан и этилен. При этом отношение СО2/СО, как правило, меньше 5.
3.Электрические разряды в масле. Это частичные, искровые и дуговые разряды. При частичных разрядах основным газом является водород; характерными газами с малым содержанием - метан и этилен. При искровых и дуговых разрядах основными газами являются водород и ацетилен; характерными газами с любым содержанием - метан и этилен.
После выявления дефекта и его подтверждения не менее чем двумя-тремя последующими измерениями следует планировать вывод трансформатора из работы прежде всего с дефектами группы 2. Чем раньше выведен из работы трансформатор с развивающимся дефектом, тем меньше риск его аварийного повреждения и объем ремонтных работ.
Если по результатам диагностики трансформатор должен быть выведен из работы, но по каким-то объективным причинам это невозможно осуществить, его следует оставить на контроле с учащенным отбором проб масла и хромотографическим анализом газов.
Хроматографический анализ газов, растворенных в масле, позволяет выявлять не только развивающиеся дефекты в трансформаторе, но и общее состояние изоляции его обмоток. Объективным показателем, позволяющим оценить степень износа изоляции обмоток трансформатора, является степень ее полимеризации, снижение которой прямо характеризует глубину физико-химического разрушения (деструкции) изоляции в процессе эксплуатации. Деструкции целлюлозной изоляции сопутствует рост содержания в трансформатором масле окиси и двуокиси углерода и образование фурановых производных. В частности, наличие суммарной концентрации СО и СО2 более 1% может свидетельствовать о деградации целлюлозной изоляции. Образование фурановых производных является прямым следствием старения бумажной изоляции.
Метод жидкостной хроматографии позволяет определять и контролировать требуемое содержание в трансформаторном масле антиокислительных присадок, защищающих масло и другие изоляционные материалы трансформатора от старения.
Список литературы
1. Афанасьев В. В. «Трансформаторы тока». Энергоатомиздат 1989 г.
2. Могузов В. Ф. «Обслуживание силовых трансформаторов».
Энергоатомиздат 1991 г.
3. Никулин Н. В. «Справочник молодого электрика по электротехническим материалам и изделиям». Высшая школа 1976 г.
4. Библиотека Мошкова http://lib.ru
5. Документация. Электроника – электротехника.
http://www.happytown.ru
6. Новосибирский Технологический университет http://power.nstu.ru
7. История трансформатора http://www.computer-museum.ru/technlgy/
8. П. Джексон. Введение в экспертные системы.: Пер. с англ. - М.: Вильямс, 2001. - 624 с.
9. Типовая технологическая инструкция. Трансформаторы напряжением 110 – 1150 кВ, мощностью 80 МВА и более. Капитальный ремонт. РДИ 34-38-058-91. М.: СПО ОРГРЭС, 1993.
10. ГОСТ 982-80 масла трансформаторные
11. РД 153-34.0-46.302-00 методические указания
12 http://www.tdtransformator.ru/artic/pokazateli_masla.html
13. http://leg.co.ua/instrukcii/pidstanciyi/ekspluataciya-silovyh-transformatorov-5.html
14. http://leg.co.ua/instrukcii/pidstanciyi/ekspluataciya-silovyh-transformatorov-8.html
15. http://leg.co.ua/instrukcii/pidstanciyi/ekspluataciya-silovyh-transformatorov-9.html
16. http://www.anchem.ru/chemanalysis/2005/037-038-full.asp
17. Э. Хефтман «Хроматография. Практическое приложение метода», 1986 г.
18. К.А. Гольберт, М.С. Виктергауз «Курс газовой хроматографии», 1974 г.-М.