Неоднородности соответственно первого - четвертого порядков
Естественно, что влияние неоднородностей различных порядков на деформирование и разрушение каких-либо конкретных объектов далеко не равнозначно. Например, неоднородности нулевого и первого порядков на устойчивость горных выработок практически не влияют, поскольку размеры структурных блоков, образуемых неоднородностями этих порядков, во много раз превосходят размеры выработок. В то же время неоднородности второго порядка, в частности естественная трещиноватость, оказывают на устойчивость выработок весьма существенное влияние, обусловливая вывалы пород из стенок и кровли выработок.
Степень влияния того или иного порядка неоднородностей определяется соотношением размеров соответствующих структурных блоков и геометрических параметров деформирующихся объектов. При этом механизм деформирования массива пород блочной структуры заключается в деформировании самих блоков и, кроме того, в их взаимном скольжении и вращении. Последние могут проявляться, если масштаб деформируемого объекта соизмерим с размерами блоков, образуемых структурными неоднородностями того или иного порядка, и они принимают участие в деформировании.
На рис. 2.7 деформации объекта «а» определяются лишь деформационными характеристиками материала среды (т. е. с учетом неоднородностей только четвертого порядка), а объектов «б-г» - суммарным влиянием неоднородностей соответствующих порядков и материала среды.
Заметим, что обобщенных численных показателей, характеризующих степень влияния структурных неоднородностей различных порядков на свойства и деформирование горных пород и массивов, пока не имеется. Это объясняется сложностью проведения крупномасштабных экспериментов, а также трудностью интерпретации получаемых результатов, поскольку при испытаниях непосредственно в местах залегания пород влияние на изучаемые процессы, помимо неоднородностей, оказывают и другие факторы: напряженное состояние массива, способ подготовки испытуемых объемов к эксперименту, влажность и др.
Вместе с тем имеющиеся данные экспериментов в массивах, сложенных различными породами, показывают, что наблюдается общая тенденция: - с увеличением объемов, вовлекаемых в процесс деформирования, модули деформации массива существенно снижаются, а значения деформаций возрастают.
Различие показателей свойств горных пород в зависимости от абсолютных геометрических размеров участков породного массива, обусловленное проявлением влияния неоднородностей различных порядков, называют масштабным эффектом. Он проявляется в разной степени в зависимости от интенсивности расчленения массива структурными неоднородностями.
В максимальной степени масштабный эффект проявляется в массивах скальных пород. Здесь он отмечается уже при сравнении результатов испытаний весьма небольших объёмов-образцов пород различных размеров. Например, даже при сравнении деформационных характеристик кристаллов минералов с соответствующими показателями мономинеральных кристаллических пород можно наблюдать снижение модулей упругости и деформации. Так, если модуль упругости кристалла кальцита равен Е = 12 105, то даже плотные мраморы имеют модуль упругости до Е = 10 105 кгс/см2. Модуль упругости кварца равен Е = 10,3 105, а кварцитов- - 9,2 105 кгс/см2.
В приведенных примерах четко прослеживается влияние неоднородностей четвертого порядка. Структурные неоднородности более низких порядков в ещё большей степени влияют на снижение значений деформационных характеристик.
На рис.2.8 в качестве примера приведена масштабная кривая изменения скорости продольных упругих волн, являющихся показателем степени упругости пород, в зависимости от исследуемого объёма породного массива, полученная для гранито-гнейсов одного из районов Кольского полуострова.
Рис.2.8 Масштабная кривая изменения скорости продольных волн с увеличением объёмов исследуемого массива пород для гранито-гнейсов одного из районов Кольского полуострова.
I - деформирование объёмов, включающих структурные неоднородности IV порядка (измерения методом ультразвукового прозвучивания на образцах стандартных размеров); II - деформирование массива, включающего структурные неоднородности III порядка (по данным ультразвукового каротажа в скважинах; III - деформирование массива с участием неоднородностей III порядка и ниже по результатам сейсмических измерений.
В частности, для объёмов пород с линейными размерами » 10-1 см, включающих неоднородности самого высокого порядка, характерны значения скоростей Vp = 5800 м/с, для объёмов с линейными размерами порядка 1 см (с неоднородностями III порядка) величины скоростей снижаются до 5000 м/с и, наконец, для неоднородностей низшего порядка с размерами 106 см преобладающее значение Vp = 4500 - 4600 м/с.
В некоторых случаях наблюдается также и качественное изменение характера деформирования пород. Так, например, если образцы ультраосновных пород - пироксенитов и перидотитов,- включающие структурные неоднородности только четвертого порядка, практически деформируются упруго вплоть до разрушения (рис. 2.9, а), то по мере увеличения области деформирования отчетливо начинают проявляться и вязкие свойства массива. Это выражается, в частности, в постепенном сближении боков выработок очистных блоков (рис. 2.9, б).
Рис. 2.9. Характер деформирования ультраосновных пород в зависимости от размеров деформирующихся объемов.
А - упругое деформирование образцов диаметром 40 мм (ОА - нагружение; AБ - разгрузка); б - развитие деформаций (сближения) стенок выработки во времени (1 - сближение реперов над выработанным пространством вертикального очистного блока высотой 40 м; 2 - то же, под выработанным пространством очистного блока).
В большей степени изучено влияние поверхностей неоднородностей различных порядков на изменение прочностных характеристик массива горных пород, являющееся одним из проявлений масштабного эффекта
Так, например, для ультраосновных пород - пироксенитов медно-никелевого месторождения Ниттис-Кумужья-Травяная - предел прочности пород на сдвиг (с учетом неоднородностей только четвертого порядка) составляет 450 кгс/см2, сцепление по мелкоблоковым естественным трещинам, представляющим собой неоднородности третьего порядка, равно 60 кгс/см2, а по крупноблоковым трещинам (второй порядок) - всего около 10 кгс/см2.
Однако необходимо отметить, что степень снижения отдельных параметров не одинакова. Весьма примечательно, например, что пределы прочности на растяжение по мере вовлечения в процесс деформирования неоднородностей низких порядков снижаются очень резко. Если для структурных блоков скальных пород (IV порядок неоднородностей) прочность при одноосном растяжении составляет 0.1 [sсж] и колеблется в пределах 70 - 120 кГ/см2, то для микротрещиноватости (III порядок) это значение снижается до 40 - 50 кГ/см2, а уже для макротрещиноватости (II порядок) оно составляет несколько килограмм-сил на квадратный сантиметр и часто практически падает до нуля.
В меньшей степени масштабный эффект проявляется в массивах осадочных пород, ещё в меньшей степени – в грунтовых массивах.
Для количественной оценки масштабного эффекта применяют, так называемые, коэффициенты структурного ослабления li, характеризующие степень снижения показателей соответствующих механических свойств массива пород вследствие наличия в массиве естественных трещин или других поверхностей структурных неоднородностей.
Коэффициенты структурного ослабления li, могут быть определены для большинства прочностных и деформационных характеристик - пределов прочности на сжатие и растяжение, модуля упругости Е, сцепления [t0], угла внутреннего трения j и др.
Но наиболее употребителен коэффициент структурного ослабления, характеризующий отношение сцепления по контактам естественных трещин к сцеплению в монолитной породе. Этот коэффициент для широкого диапазона породных массивов достаточно устойчив, составляет 0,01-0,02 и наглядно иллюстрирует влияние неоднородностей второго порядка - крупноблоковой естественной трещиноватости - на прочностные характеристики массива пород. Для мелкоблоковой трещиноватости (третий порядок) коэффициент структурного ослабления составляет 0,1-0,2, а по микротрещинам (четвертый порядок) близок к 1.
Влияние других видов структурных неоднородностей на прочность массива изучено менее детально, имеются лишь обобщенные данные о прочностных характеристиках, в частности, значения сцепления и углов внутреннего трения по контактам слоев различных осадочных толщ и отдельных петрографических разновидностей пород.