Графическое представление экспериментальных данных

Если вам наскучило стрелять из пистолета шариком и получать, хотя и разбросанные, но в общем-то почти одинаковые результаты среднего значения дальности полета в каждой серии опытов, я могу предложить новый эксперимент. Можно менять угол наклона оси пистолета к горизонту на 10° через каждые 8 выстрелов. Как нетрудно подсчитать, у нас есть возможность получить Графическое представление экспериментальных данных - student2.ru серий и при этом дальность полета будет различна в каждой серии. Перед нами открывается целая научная проблема – как дальность полета Графическое представление экспериментальных данных - student2.ru зависит от угла a к горизонту, под которым производится выстрел. Опишем инструкцию по проведению эксперимента и обработки данных.

1. Подготовить Таблицу 5, в которую были бы занесены все экспериментальные данные по каждой серии выстрелов отдельно.

2. Составить Таблицу 6 обработки результатов Таблицы 5. Для этого рассчитать Графическое представление экспериментальных данных - student2.ru среднее значение дальности полета в каждой серии из 8 выстрелов, а также для каждой серии рассчитать среднеквадратичное отклонение Графическое представление экспериментальных данных - student2.ru и доверительный интервал Графическое представление экспериментальных данных - student2.ru .

3. Построить график зависимости Графическое представление экспериментальных данных - student2.ru .

Таблица 5. Дальность полета Графическое представление экспериментальных данных - student2.ru при разных углах стрельбы a.

 
x, мм
10° x, мм
20° x, мм
30° x, мм
40° x, мм
50° x, мм
60° x, мм
70° x, мм
80° x, мм
90° x, мм

Таблица 6. Статистическая обработка данных из Табл.5

10° 20° 30° 40° 50° 60° 70° 80° 90°
< x >, мм 2,4 172,1 263,6 466,7 451,6 285,2 197,6 1,75
Sx, мм 1,3 64,0 74,8 70,0 73,5 74,1 76,5 73,0 79,3 0,707
Δх, мм 0,46 22,6 26,5 24,7 26,0 26,2 27,0 25,8 28,0 0,25

Графическое представление экспериментальных данных - student2.ru Табличное представление результата не очень наглядно. Лучше представить эти данные в виде графика зависимости дальности полета Графическое представление экспериментальных данных - student2.ru от угла a или, как говорят, Графическое представление экспериментальных данных - student2.ru . Такая запись означает, что дальность полета является функцией угла a. Для построения графика надо выбрать специальную бумагу, разлинеенную (лучше через 1 мм) горизонтальными и вертикальными линиями (миллиметровка) и нанести на нее систему координат. Начало координат можно отметить в самой левой нижней точке пересечения линий и провести из нее горизонтальную и вертикальную оси (см. рис.20). Так как значение функции всегда откладывается по оси Y, а значение аргумента вдоль оси Х, то в нашем случае по оси Y будем откладывать значения дальности полета Графическое представление экспериментальных данных - student2.ru , а вдоль оси Х – значение угла a

Графическое представление экспериментальных данных - student2.ru Следующим очень важным шагом является выбор маштаба двух осей. Для этого подсчитаем для начала, какова длина нашей оси Х в миллиметрах (или в клетках, если бумага не миллиметровая). На рис.20 ось Х содержит 45 клеток. Наша задача состоит в том, чтобы для каждого значения угла a из табл.6 нашлась соответствующая координата на оси Х. Весь диапазон углов занимает 90° (от 0° до 90°). Числа 45 и 90 очень хорошо делятся на 9, что дает нам масштаб по оси Х – 5 клеток на каждые 10°. Снизу оси Х через каждые 5 клеток поставим риску длиной в одну клетку, а под каждой риской поставим метку – число градусов, соответствующее каждой риске. На конце оси Х (см. рис.2), обозначенном стрелкой, расположим название оси, то есть обозначение откладываемой величины (угла a) и через запятую размерность этой величины ("град" – градусы).

Графическое представление экспериментальных данных - student2.ru Теперь перейдем к оформлению оси Y. Ее длина исчисляется 34 клетками. Величины Графическое представление экспериментальных данных - student2.ru из табл.6 лежат в диапазоне от 1,75 мм до 490,4 мм. Как и на любой линейке, метки на оси Y должны быть круглыми числами, поэтому максимальную метку, превышающую значение 490,4 мм, возьмем равной 500 мм, а минимальную конечно же 0. Теперь обратим внимание, что ось Y содержит 34 клетки. Для максимальной метки в 500 мм нам надо подобрать такое число клеток (например 25), которое делилось бы, например на 5, так же хорошо, как и 500. Расставляем риски на вертикальной оси через 5 клеток и каждой риске приписываем слева соответствующую метку с шагом 100 мм. Название оси Y и размерность указываем в ее конце около вертикальной стрелки (рис.22). Теперь все готово, чтобы изобразить экспериментальные данные из табл.6 в виде точек на приготовленной системе координат.

Графическое представление экспериментальных данных - student2.ru Чтобы поставить экспериментальную точку в нужном месте системы координат, надо знать масштаб, то есть сколько, например, миллиметров содержит одна клетка вдоль оси Y. Масштаб рассчитывается легко: надо разность соседних меток разделить на количество клеток между соседними рисками. На рис.23 масштаб будет равен Графическое представление экспериментальных данных - student2.ru = Графическое представление экспериментальных данных - student2.ru , то есть одна клетка соответствует 20 мм. Примем за правило, что точность расположения точки должна соответствовать половине клетки, что соответствует 10 мм. Если клетка крупная, тогда точность постановки экспериментальной точки можно довести до четверти клетки. Таким образом на рис.23 точка с координатой 493 мм будет располагаться приблизительно посередине пятой клетки между метками 400 и 500. Ни в коем случае не обозначайте значение координаты точки на масштабной оси. Это засоряет график и приводит к трудностям восприятия информации. Представьте, что в таблице не 8 значений, а 100 (или даже 1000). Если каждое значение отмечать на оси, то вся ось будет сплошь усыпана мелкими числами, сливающимися в нечитаемый текст.

Графическое представление экспериментальных данных - student2.ru С научной точки зрения результат эксперимента без рассчета погрешности не имеет ценности. Поэтому на графике изображают доверительный интервал в виде вертикального отрезка с горизонтальными засечками. Длина этого отрезка равна удвоенному доверительному интервалу Графическое представление экспериментальных данных - student2.ru для каждой точки, а сама точка лежит на его середине (см. рис.23).

Соединять точки прямыми отрезками (см. рис.24) было бы неправильно. В этом нет физического смысла. Если есть возможность построить простую математическую модель эксперимента – в данном случае полета шарика в поле тяжести Земли, – то надо решить кинематическую задачу и получить аналитическую зависимость дальности полета от угла a.

Графическое представление экспериментальных данных - student2.ru Итак, строим модель. Начальные условия: шарик вылетает с поверхности земли со скоростью Графическое представление экспериментальных данных - student2.ru под углом a к горизонту, летит с постоянным вертикальным ускорением свободного падения Графическое представление экспериментальных данных - student2.ru м/с2 в однородном поле тяжести Земли и падает на расстоянии Графическое представление экспериментальных данных - student2.ru от места вылета. Найдем дальность полета по формуле (которую вы сами должны вывести на практических занятиях по физике): Графическое представление экспериментальных данных - student2.ru

Из формулы видно, что Графическое представление экспериментальных данных - student2.ru пропорционален синусу удвоенного угла

Графическое представление экспериментальных данных - student2.ru ,

что дает нам представление о графике зависимости Графическое представление экспериментальных данных - student2.ru , который изображен сплошной плавной линией на рис.25. И не надейтесь, что экспериментальные точки будут лежать на этой кривой. Чаще всего они будут случайно разбросаны вокруг нее – какие-то выше, какие-то ниже. Главное, чтобы эта линия пересекла каждый отрезок удвоенного доверительного интервала (на рис.25 всего одна точка при a = 20° лежит существенно ниже и выходит за рамки теоретической кривой).

Соответствие расположения экспериментальных точек теоретической кривой дает право нам утверждать, что принятая простая модель полета в пределах погрешности эксперимента правильно описывает реальный полет шарика. Кроме качественного вывода с помощью графика можно рассчитать начальную скорость шарика Графическое представление экспериментальных данных - student2.ru . Для этого надо всего лишь увидеть на рис.25 максимальное значение Графическое представление экспериментальных данных - student2.ru мм на теоретической кривой, при этом очевидно Графическое представление экспериментальных данных - student2.ru . Рассчитаем начальную скорость: Графическое представление экспериментальных данных - student2.ru м/с. Вопрос о погрешности начальной скорости в данном примере очень сложен и не укладывается в принятый нами упрощенный метод рассчета ошибок.

Наши рекомендации