Основное уравнение динамики вращательного движения. Рассмотрим цилиндр, вращающийся вокруг
![]() |
Рассмотрим цилиндр, вращающийся вокруг
неподвижной оси (рис.4.5) под действием
постоянной силы F. За время dt точка приложения силы переместится на dS и работа этой силы будет
dA = F dS, которая при отсутствии сопротивления
равна изменению кинетической энергии.
т.к. , то
Произведение F×r есть величина, называемая моментом M силы F относительно оси вращения 0. Поэтому запишем
или
, но
, откуда
M = Á ∙ ε (4.7)
В векторной форме M = Á ∙ ε(4.8)
Полученная формула носит название основного уравнения динамики вращательного движения. Момент силы, приложенный к телу, численно равен произведению момента инерции на угловое ускорение. Она выражает второй закон Ньютона для вращательного движения. Роль силы при вращательном движении играет момент силы, роль массы - момент инерции тела. Момент силы M(Н*м) является векторной величиной, направленной вдоль оси вращения. Из уравнения (4.8) видно, что направление вектора совпадает с направлением вектора углового ускорения .
Из вывода (4.8) можно найти выражение для работы при вращении тела:
dA = F dS = F r dj = M dj, (4.9)
т.е. работа при вращении тела равна произведению момента действующей силы на угол поворота.
14) Моментом импульса (количества движения)материальной точки Аотносительно неподвижной точки Оназывается физическая величина, определяемая векторным произведением:
где r — радиус-вектор, проведенный из точки О в точку A, p=mv — импульс материальной точки (рис. 28); L — псевдовектор, его направление совпадает с направлением поступательного движения правого винта при его вращении от r к р.
момент импульса отдельной частицы равен
Модуль вектора момента импульса
где a — угол между векторамиrир,l — плечо вектора р относительно точки О.
Моментом импульса относительно неподвижной оси z называется скалярная величина Lz, равная проекции на эту ось вектора момента импульса, определенного относительно произвольной точки О данной оси. Момент импульса Lz не зависит от положения точки О на оси z.
Момент импульса твердого телаотносительно оси есть сумма моментов импульса отдельных частиц:
Используя формулу (17.1) vi = wri, получим
Таким образом, момент импульса твердого тела относительно оси равен произведению момента инерции тела относительно той же оси на угловую скорость. Продифференцируем уравнение (19.2) по времени:
т. е.
Это выражение — еще одна форма уравнения динамики вращательного движения твердого телаотносительно неподвижной оси: производная момента импульса твердого тела относительно оси равна моменту сил относительно той же оси.
В замкнутой системе момент внешних сил откуда
Выражение представляет собой закон сохранения момента импульса: момент импульса замкнутой системы сохраняется, т. е. не изменяется с течением времени.