Електричний заряд. Закон збереження електричного заряду. Закон Кулона
Електростатика – вчення про статичні електричні заряди та про властивості полів цих зарядів.
Електричний заряд – це невіддільна властивість деяких елементарних частинок.
До елементарних частинок відносяться такі мікрочастинки, для яких сучасними засобами фізики не можна доказати, що вони є об’єднаннями інших мікрочастинок.
Відомо, що заряди бувають двох видів – позитивні й негативні. Носієм елементарного негативного заряду є електрон. Елементарним позитивним зарядом наділений протон.
За абсолютною величиною елементарні заряди електрона й протона однакові. За одиницю електричного заряду прийнято кулон (Кл).
Один кулон – це електричний заряд, який проходить через поперечний переріз провідника при силі струму в один ампер за час в одну секунду
1Кл = 1 А/с.
Елементарний електричний заряд електрона або протона дорівнює
| e | = 1,6 ּ 10-19 Кл.
Будь-який інший заряд є сукупністю елементарних зарядів
q = ± Nּe . (6.1.1)
Електричні заряди можуть мати лише дискретні значення, кратні заряду електрона. Таку властивість зарядів називають квантуванням.
В довільних інерціальних системах заряд є інваріантним або незмінним.
Електричні заряди можуть зникати або виникати знову. Пояснити цей факт можна однаковим або різним числом зарядів різних знаків у системі, або їх взаємним перетворенням. Так відомо, що електрон і позитрон можуть анігілювати
е + +е ® 2g . (6.1.2)
В той же час гамма-кванти високих енергій (Е » 1,02Ме) - в полі ядерних сил, або кулонівському полі елементарних заряджених частинок здатні перетворюватись в електрон і позитрон:
g ® е + +е . (6.1.3)
Сумарний заряд електрично-ізольованої системи є величиною сталою. Це твердження є законом збереження електричного заряду.
Всі основні властивості електричних зарядів знайдені дослідним шляхом. Серед них відмітимо такі:
- однойменні заряди відштовхуються, різнойменні притягуються;
- величина заряду не залежить від системи відліку;
- дискретний характер заряду, тобто кратність до елементарного заряду;
- електричний заряд має властивість адитивності. Це означає, що заряд системи тіл дорівнює сумі зарядів всіх частинок , які входять в систему.
В електростатиці використовується фізична модель точкового джерела.
Точковим джерелом заряду називається заряджене тіло, форма й розміри якого в даних умовах не є суттєвими.
Дослідним способом було доказано, що сила взаємодії двох нерухомих точкових зарядів пропорційна величині кожного із зарядів і обернено пропорційна квадрату відстані між ними.
Закон взаємодії точкових зарядів називається законом Кулона
, (6.1.4)
де q1 і q2 - точкові електричні заряди; - діелектрична стала; r – відстань між точковими зарядами.
Сила напрямлена вздовж прямої, яка з’єднує взаємодіючі заряди. У векторній формі сила, з якою взаємодіють два точкові заряди q1 і q2 записується так
. (6.1.5)
Згідно з третім законом Ньютона сили з якими взаємодіють два точкових заряди, рівні за величиною і протилежні за напрямком
1,2 = - 2,1. (6.1.6)
Діелектрична стала ε0 відноситься до числа фундаментальних фізичних сталих. Її величина дорівнює 8,85ּ10-12 Ф/м.
Якщо взаємодія двох точкових зарядів відбувається у ізотропному діелектричному середовищі, то закон Кулона матиме вигляд
. (6.1.7)
Відносна діелектрична проникність ε показує у скільки разів сила взаємодії між електричними зарядами в даному ізотропному діелектричному середовищі буде меншою сили взаємодії між цими зарядами у вакуумі
, (6.1.8)
де F0 – сила взаємодії між двома точковими зарядами у вакуумі; F – сила взаємодії між цими зарядами в однорідному діелектричному середовищі.
Відносна діелектрична проникність вакууму = 1.
6.2. Електричне поле і його напруженість. Принцип суперпозиції полів. Поле точкового заряду
Будь-яке заряджене тіло можна розглядати як сукупність точкових зарядів подібно до того, як в механіці будь-яке тіло можна вважати сукупністю матеріальних точок.
Тому електростатична сила, з якою одне заряджене тіло діє на інше заряджене тіло, дорівнює геометричній сумі сил, прикладених до всіх точкових зарядів, наприклад другого тіла з сторони всіх точкових зарядів першого тіла.
Часто буває більш доцільно вважати, що заряди розподілені в зарядженому тілі неперервно, а тому слід користуватись поняттями лінійної, поверхневої й об’ємної густини зарядів.
Лінійна густина зарядів у випадку зарядженого стрижня, визначається за допомогою формули
t = , (6.2.1)
де - лінійна густина зарядів, яка вимірюється в Кл/м.
Поверхнева густина зарядів у випадку рівномірно зарядженої поверхні визначається за формулою
s = , (6.2.2)
де σ – поверхнева густина зарядів, яка вимірюється в Кл/м2.
Об’ємна густина зарядів, у випадку рівномірно зарядженого тіла по об’єму, визначається за формулою
r = , (6.2.3)
де ρ – об’ємна густина зарядів, яка вимірюється в Кл/м3.
Взаємодія між двома зарядами, які перебувають у стані спокою, здійснюється за рахунок взаємодії електричних полів цих зарядів. Будь-який заряд змінює властивості оточуючого простору, створюючи в ньому електричне поле.
Поле електричного заряду можна виявити за допомогою іншого заряду з своїм електричним полем.
Електричне поле – це один із видів існування матерії в оточуючому просторі.
Електричне поле будь-якого статичного заряду можна характеризувати векторною величиною – напруженістю електричного поля, і скалярною величиною – потенціалом.
Напруженість електричного поля визначається силою, з якою діє деякий заряд у даній точці його поля на електричне поле точкового заряду, поміщеного в цю точку. Точковий заряд завжди є позитивним. Розміри точкового заряду мають бути такими, щоб він своїм власним електричним полем не спотворював поля основного заряду.
Рис 6.1
Нехай у деякому просторі заряд Q створює статичне електричне поле. Для виявлення цього поля в точку А розміщують точковий заряд qо (рис 6.1).
На заряд qо зі сторони основного заряду Q діє кулонівська сила вздовж лінії, яка з’єднує ці заряди. Якщо в точку А послідовно розміщувати різні точкові заряди q1, q2, q3,..., qn , то і сили взаємодії будуть відповідно різними 1, 2, 3, ..., n. Однак у кожному випадку відношення відповідної сили до величини точкового заряду, залишиться сталим.
Величину цього відношення називають напруженістю електричного поля і позначають буквою
. (6.2.4)
Одиницею напруженості електричного поля статичного заряду є Н/Кл або В/м.
Напрям вектора напруженості електричного поля збігається з напрямком вектора сили.
Важливо знати:
- якщо поле створене позитивним зарядом, то напрям вектора в будь-якій точці цього поля збігається з радіусом-вектором і направлений в протилежну сторону від заряду.
- якщо поле створене негативним зарядом, то напрям вектора в будь-якій точці цього поля збігається з радіусом-вектором і направлений у сторону до заряду (рис 6.2).
Рис. 6.2
До кулонівських сил застосовується принцип незалежності дії сил – принцип суперпозиції.
Суть принципу суперпозиції полягає в тому, що напруженість результуючого поля, створеного системою електричних зарядів, теж дорівнює геометричній сумі напруженостей полів кожного із зарядів окремо, тобто
= i . (6.2.5)
Формула (6.2.5) виражає принцип суперпозиції (принцип накладання) електростатичних полів. Він дозволяє розрахувати електростатичне поле довільної системи нерухомих електричних зарядів, розглянувши її як сукупність точкових електричних зарядів.
Графічно електростатичне поле зображують за допомогою силових ліній або ліній напруженості, які завжди розпочинаються на позитивному заряді й закінчуються на негативному заряді.
Вектор напруженості електростатичного поля завжди є дотичною до силової лінії у даній точці поля (рис 6.3).
Рис 6.3
Силові лінії окремих електричних зарядів починаються на позитивному заряді і йдуть у безмежність або починаються у безмежності й закінчуються на негативному заряді (рис. 6.4 а,б).
а) б)
Рис. 6.4
Для однорідного диполя (наприклад електричного поля між пластинами конденсатора) лінії напруженості паралельні вектору напруженості (рис. 6.5).
Рис. 6.5
Важливо знати, що силові лінії електричного поля завжди перпендикулярні до поверхні зарядженого тіла. Якби це було не так, то паралельна до поверхні тіла складова напруженості електричного поля привела б до руху зарядів, а це є протиріччям статичності їх розподілу (рис. 6.6).
Рис. 6.6
Електричне поле точкового заряду розраховують досить простою формулою, яка одержана з використанням сили Кулона для точкового заряду, тобто
Е = , (6.2.6)
де q – точковий заряд, поле якого визначається за цією формулою; - діелектрична стала; - відносна діелектрична стала; r – відстань від заряду до точки, в якій визначається напруженість поля.
6.3. Теорема Гаусса і її використання
У випадках розрахунків напруженості електричного поля не- точкових зарядів, виникають певні труднощі. В таких випадках напруженість електричного поля розраховують за допомогою методу суперпозиції. Для цього, просторово розміщені заряди ділять на точкові й методом інтегрування (принцип суперпозиції), знаходять відповідну напруженість. Покажемо це на прикладах:
Приклад 1. Визначити напруженість електричного поля біля безмежної, рівномірно зарядженої площини з поверхневою густиною зарядів s (рис. 6.7).
Скористаємось формулою напруженості точкового заряду (6.2.6)
dE = , (6.3.1)
де dq – це заряд заштрихованої безмежно малої ділянки поверхні; x – відстань від цієї ділянки до точки А, в якій розраховується напруженість електричного поля Е.
Рис. 6.7
З рисунка видно, що x2 = z2 + r2, а dq = rda drs, й dEz = dEcosj.
З урахуванням цих позначень одержуємо:
. (6.3.2)
Але оскільки соsj = , тому
.
Інтегруємо цей вираз у межах: для r від 0 до ; для a від 0 до 2p, одержимо:
З розрахунків видно, що напруженість електричного поля біля безмежної, рівномірно зарядженої площини з поверхневою густиною зарядів s, визначається досить простою формулою і не залежить від відстані до самої площини
(6.3.3)
Приклад 2. Визначити напруженість електричного поля на відстані а від тонкої, досить довгої, рівномірно зарядженої, із лінійною густиною зарядів t нитки або циліндра (рис 6.8).
Рис. 6.8
Скористаємось формулою (6.2.6)
dE = .
З рисунка видно, що: dq = tdl і dS = rda, а також dS = dl·cosa.
З урахуванням цих залежностей одержуємо величину точкового заряду:
dq = . (6.3.4)
Тоді напруженість електричного поля у напрямі осі у Ey – буде дорівнювати
dEy = dEcosa = = .
Величину радіуса-вектора r виразимо через відстань а і кут a:
r = .
З урахуванням останнього одержимо:
dEy = . (6.3.5)
Інтегруємо останній вираз у межах зміни a від 0 до , помноживши весь вираз на 2 (враховується друга, симетрична частина нитки).
.
Таким чином одержано досить просту залежність напруженості електричного поля біля довгої, рівномірно зарядженої нитки або циліндра:
Е = . (6.3.6)
Паралельна складова напруженості Еx, завдяки симетричності нитки, буде дорівнювати нулю.
Знайдемо потік вектора напруженості електричного поля крізь замкнену поверхню ( рис. 6.9)
Рис. 6.9
, (6.3.7)
де - величина площі заштрихованої поверхні, - нормаль до поверхні (одиничний вектор).
З рисунка видно, що
де - тілесний кут.
Площа поверхні кулі (тут є тілесним кутом).
Таким чином одержуємо:
. (6.3.8)
Інтегруємо цей вираз у межах замкнутої поверхні і повного тілесного кута для цієї поверхні, тобто
.
Одержаний вираз носить назву теореми Гаусса
. (6.3.9)
Якщо замкнута поверхня охоплює систему зарядів, теорема Гаусса набуде вигляду
. (6.3.10)
Потік вектора напруженості електричного поля крізь довільну замкнуту поверхню дорівнює алгебраїчній сумі всіх зарядів у середині цієї поверхні, поділених на ee0.
Покажемо на прикладах, як використовується теорема Гаусса у найпростіших випадках.
Приклад 1. Електричне поле біля безмежної, рівномірно зарядженої, із поверхневою густиною зарядів σ, площини ( рис. 6.10).
Рис. 6.10
На рисунку заряджена площина спроектована перпендикулярно до площини листка. Замкнена поверхня є циліндром із площею торців S. Потік вектора напруженості в даному випадку слід розрахувати лише крізь торці. Лінії напруженості електричного поля паралельні до бокової поверхні, а тому потоку не створюють, тобто
. (6.3.11)
За теоремою Гаусса
. (6.3.12)
Прирівнявши праві сторони (6.3.11) і (6.3.12) одержимо:
.
Цей висновок збігається з формулою (6.3.3).
Приклад 2. Електричне поле на відстані a від довгої, рівномірно зарядженої з лінійною густиною зарядів τ, нитки (рис. 6.11).
Рис. 6.11
На рисунку замкнуту поверхню вибрано у вигляді циліндра радіусом а і довжиною h. Потік силових ліній слід розглядати лише крізь бокову поверхню, так як торці перпендикулярні до нитки й паралельні до напрямку силових ліній електричного поля. (Потік крізь торці в цьому випадку дорівнює нулю).
. (6.3.13)
За теоремою Гаусса
. (6.3.14)
Прирівнюємо праві частини (6.3.13) і (6.3.14), одержимо
= .
Звідки
, (6.3.15)
що збігається з формулою (6.3.6)
Висновок. Теорема Гаусса значно спрощує розрахунки, але має дуже вузькі рамки використання. Більш загальним, універсальним методом розрахунків напруженості електричного поля є метод суперпозиції, який у кінцевому випадку зводиться до інтегрування.
ЛЕКЦІЯ 7
ПОТЕНЦІАЛ ЕЛЕКТРОСТАТИЧНОГО ПОЛЯ
7.1. Циркуляція вектора напруженості .Теорема про циркуляцію вектора напруженості. Потенціальна енергія заряду.
7.2. Потенціал електростатичного поля. Різниця потенціалів. Принцип суперпозиції.
7.3. Зв’язок між потенціалом і напруженістю електростатич-ного поля . Приклади розрахунку полів.
7.1. Циркуляція вектора напруженості. Теорема про циркуляцію вектора напруженості. Потенціальна енергія заряду
Знайдемо роботу переміщення точкового заряду qо в електричному полі точкового заряду q із точки 1 в точку 2 (рис 7.1)
Рис 7.1
На елементарному переміщенні d силою виконується елементарна робота, яка дорівнює
dА = = F·dl·cosa = dr, (7.1.1)
де dr=dl cos a - проекція переміщення d на напрям дії сили.
Інтегруємо вираз ( 7 .1 .1) в межах від r1 до r2 , одержимо
A1,2 = = . ( 7. 1. 2)
З формули ( 7 .1 .2) видно, що робота переміщення точкового заряду qо із точки 1 в точку 2 поля статичного заряду q не залежить від форми шляху, а визначається лише положенням початкової й кінцевої точок.
Цей висновок є доказом того, що поле точкового заряду є потенціальним, а діючі в цьому полі сили є консервативними.
У випадку замкнутого контуру робота переміщення точкового заряду qо в полі статичного заряду q буде дорівнювати нулю (рис 7.2).
Рис. 7.2
Елементарна робота сил поля на шляху d дорівнює
q d = qoEcosadl = qoEedl,
де Ee = Ecosa.
Робота перенесення точкового заряду qo по замкнутому контуру в цьому випадку буде дорівнювати нулю
qo = qo =0. ( 7.1 .3)
Оскільки qo 0, то
= 0. ( 7. 1 .4)
Вираз (7. 1. 4) називають теоремою про циркуляцію вектора електростатичного поля вздовж будь-якого замкнутого контуру.
Силове поле, яке наділене такими властивостями, називають потенціальним полем.
Формула (7.1.4) має використання лише для статичних (нерухомих) зарядів.
В потенціальних полях робота консервативних сил виконується за рахунок зменшення потенціальної енергії.
Скориставшись формулою (7.1.2), виразимо роботу сил поля по переміщенню точкового заряду qo з точки 1 в точку 2 поля заряду q, через потенціальні енергії заряду qo, в цих точках ( рис 7 .1)
A1,2 = = - = П1 – П2, (7.1.5)
де П1 = - потенціальна енергія заряду q0 в точці 1 поля точкового заряду q;
П2 = - потенціальна енергія заряду qo в точці 2 поля точкового заряду .
Або виразимо цю роботу через зменшення потенціальної енергії, при перенесенні заряду q0 з точки 1 в точку 2, тобто
А1,2 = - ( П2 – П1 ) . ( 7. 1. 6)
Якщо поле створюється системою точкових зарядів, то потенціальна енергія заряду qo, в полі системи точкових зарядів q,i матиме вигляд
П = qo . (7.1 .7)
Важливо знати,що для однойменних зарядів потенціальна енергія їх взаємодії завжди додатна, а потенціальна енергія взаємодії різнойменних зарядів завжди від’ємна.
7.2. Потенціал електростатичного поля. Різниця потенціалів. Принцип суперпозиції
В лекціях з розділу “Механіка“ потенціальна енергія матеріальної точки або тіла визначалась через роботу переміщення тіла з будь-якої точки поля в деяке фіксоване положення, вибране за нульове положення, тобто
= П . ( 7.2.1)
Для електричних зарядів сила = qo , тому
qo = П . ( 7.2.2.)
З рівності (7.2.2) можна зробити висновок, що відношення = const, тобто який би заряд qi не розміщувати в поле іншого заряду, відношення потенціальної енергії заряду qi до величини цього заряду для даної точки поля буде величиною сталою. Цю величину називають потенціалом і позначають буквою j , тобто
j = . (7. 2. 3)
Потенціал j в будь-якій точці електростатичного поля є скалярною величиною, яка визначається потенціальною енергією позитивного пробного заряду, поміщеного в цю точку.
З урахуванням формули (7 .1. 5) потенціал поля точкового заряду q буде дорівнювати
j = . ( 7. 2. 4 )
При переміщенні одиничного позитивного заряду з точки 1 поля в точку 2 виконану роботу можна виразити спочатку через різницю потенціальних енергій, а потім і через різницю потенціалів поля в цих точках, тобто
A1,2 = П1 – П2 = qo (j1 - j2) =qo Dj. ( 7. 2. 5 )
Різниця потенціалів в двох точках поля j1 - j2 визначається роботою сил поля по переміщенню точкового позитивного заряду із точки 1 в точку 2, тобто
j1 - j2 = . ( 7. 2. 6 )
Якщо вибрати точку 2 за межами поля, скажемо на безмежності, то й потенціал поля там буде дорівнювати нулю. Тому потенціал поля точкового заряду з цих міркувань можна виразити ще й так:
j = , ( 7. 2. 7 )
де A1,¥ - робота переміщення заряду qo з даної точки 1 в безмежність; qo - точковий позитивний заряд.
Потенціал точкового заряду, так само як і різниця потенціалів, вимірюється в Дж/Кл або вольтах ( В ).
Для системи точкових зарядів потенціал поля в довільний точці поля цих зарядів визначається за допомогою принципу суперпозиції полів, тобто
j = , ( 7. 2. 8)
де jI – потенціал і -го заряду в цій точці поля.
Потенціал поля системи електричних зарядів дорівнює алгебраїчній сумі потенціалів полів всіх цих зарядів. У випадку просторового розміщення системи електричних зарядів, потенціал поля цих зарядів знаходиться шляхом інтегрування.
Розглянемо приклад розрахунку потенціалу просторово розміщених електричних зарядів. Для цього знайдемо потенціал поля рівномірно зарядженого стрижня довжиною l з лінійною густиною зарядів t, в точці А, яка перебуває на продовженні осі стрижня на відстані а від його кінця (рис. 7.3).
Рис 7.3
На стрижні виділимо безмежно малу ділянку, довжиною dx із зарядом dq, для якої потенціал в точці А можна записати, як для точкового заряду, а саме
dj = . (7.2.9)
Величина точкового заряду dq дорівнює tdx, тому
dj = . (7.2.10)
Проінтегруємо цей вираз в межах зміни x від а до a+l, тобто
j = = ln .
Аналогічно можна виконувати розрахунки потенціалу просторово розміщених електричних зарядів та в інших випадках
7.3. Зв’язок між потенціалом і напруженістю електростатич-ного поля. Приклади розрахунку полів
Як уже показано вище, робота переміщення одиничного позитивного заряду qo в полі заряду q, виконується за рахунок зменшення потенціальної енергії, тобто
А1,2 = П1 – П2 = -(П2 – П1) = -q(j2 - j1).
Запишемо цю роботу для безмежно малого переміщення, на якому електричний потенціал змінюється на безмежно малу величину
dА = -qodj,
і
dА = qo . (7.3.1)
Прирівняємо праві сторони рівностей (7.3.1), одержимо зв’язок між потенціалом і напруженістю електростатичного поля:
= -dj,
звідки
E = - . (7.3.2)
Сам потенціал dj є величиною скалярною, а градієнт зміни потенціалу в певному напрямі є величиною векторною.
В більш загальному випадку просторового переміщення точкового заряду формула (7.3.2) набуває вигляду
= - j = - j,
де - вектор, який має назву оператора Гамільтона або його ще називають “набла”.
Оператор є вектором, який також можна записати так
= + + , (7.3.3)
де , , - одиничні вектори в напрямку осей x,y,z декартової системи координат.
Знайдемо різницю потенціалів j2 - j1, в двох точках поля біля безмежної поверхні з поверхневою густиною зарядів s у відповідності з рисунком (рис.7.4)
Рис 7.4
Скористаємося формулою (7.3.2) зв’язку напруженості електрич-ного поля з потенціалом, одержимо
dj = -Edr. (7.3.4)
Напруженість поля E біля безмежної поверхні розрахована в шостій лекції (6.3.3), тому скористаємось готовим результатом, який дорівнює
E = .
Тоді
dj = - dr.
Інтегруємо цей вираз в межах зміни координати від x1 до x2 і зміни потенціалу від φ1 до φ2, одержимо
= - ,
звідки
j2 - j1 = - (x2 – x1),
або
j1 - j2 = (x2 – x1). (7.3.5)
2. Потенціали поля в двох точках біля довгого, рівномірно зарядженого стрижня з лінійною густиною зарядів t у відповідності з рисунком (рис. 7.5)
Рис 7.5
На довільній відстані x від стрижня напруженість електричного поля розраховується або за принципом суперпозиції (методом інтегрування), або за теоремою Гаусса. Скористаємось готовою формулою напруженості електричного поля (6.3.15) попередньої лекції
E = .
Підставимо це значення напруженості у формулу (7.3.2) та виконаємо інтегрування
dj = - dx, (7.3.6)
або
= - ,
звідки
j1 - j2 = ln . (7.3.7)
Аналогічно можуть бути виконані і будь-які інші розрахунки різниці потенціалів електричного поля статичних зарядів.
ЛЕКЦІЯ 8
ЕЛЕКТРИЧНЕ ПОЛЕ В ПРОВІДНИКУ. ЕЛЕКТРОЄМНІСТЬ
8.1. Провідник в електростатичному полі. Розподіл зарядів у провіднику.
8.2. Електроємність окремого провідника. Конденсатори. Електроємність конденсаторів різної форми.
8.3. Енергія взаємодії електричних зарядів. Енергія окремого провідника й конденсатора.
8.4. Енергія електростатичного поля. Густина енергії електростатичного поля.
8.1. Провідник в електростатичному полі. Розподіл зарядів у провіднику
У металевих провідниках завжди є вільні (не зв’язані з вузлами кристалічної гратки) електричні заряди. Переважно це валентні електрони, які слабо зв’язані з атомами в кристалічній структурі й за цієї причини стали колективізованими. Вільні електрони у провіднику перебувають у неперервному хаотичному русі, рівномірно заповнюючи весь об’єм провідника.
При внесенні такого провідника у зовнішнє електричне поле з сторони останнього на вільні електрони у провіднику, а також на вузли кристалічної гратки, які втративши частину валентних електронів і стали позитивними іонами, будуть діяти електричні сили. Під дією цих сил у провіднику відбувається перерозподіл електричних зарядів. Це призводить до виникнення власного електричного поля, направленого в протилеж-ному напрямку до зовнішнього електричного поля.
Перерозподіл зарядів у провіднику завершиться в той момент, коли внутрішнє поле повністю компенсує зовнішнє електричне поле. Будь-яка зміна величини зовнішнього електричного поля завжди закінчується адекватною зміною величини внутрішнього електричного поля. Так що результуюче поле у провіднику, згідно з принципом суперпозиції, буде дорівнювати нулю. (рис. 8.1).
На рис.8.1 у випадку а) тіло є нейтральним і не таким, у якому відсутні вільні електричні заряди. У випадку б) вільні електричні заряди провідника змістились і утворили власне електричне поле , яке зрівноважило або знищило зовнішнє електричне поле . В цьому випадку поле у провіднику буде дорівнювати нулю, тобто
+ = 0. (8.1.1)
а) б)
Рис 8.1
Електричне поле провідником деформується. Силові лінії зовнішнього електричного поля входять у провідник перпендикулярно до його поверхні й виходять з провідника теж перпендикулярно до його поверхні.
Поверхня провідника є еквіпотенціальною, тобто поверхнею однакового потенціалу.
Якщо такому провіднику надати додатково електричні заряди величиною q, то і в цьому випадку всередині провідника електричне поле буде відсутнім. Це означає, що і ці електричні заряди електричним полем будуть перерозподілені по поверхні провідника. У провіднику, що перебуває у зовнішньому електричному полі, вільні електричні заряди перерозподіляються лише на його поверхні.
Цю властивість провідників використовують для електростатичного захисту чутливої електронної техніки. Корпуси різних електронних пристроїв виготовляють із провідників. Якщо такий корпус заземлити, то тим самим можна захистити електронні пристрої від будь-яких зовнішніх електричних і магнітних перешкод. Поверхня металевого корпусу стає еквіпотенціальною і добре виконує покладені на неї екрануючі властивості.
Важливо знати:
1. В стаціонарному стані направлений рух вільних зарядів у провіднику відсутній. Електричне поле у провіднику дорівнює нулю. Це означає, що хаотичний рух вільних електричних зарядів у провіднику ніколи не приводить до їх перерозподілу.
2. Якщо внести провідник у зовнішнє електричне поле, то власні вільні електричні заряди, а також додатково передані провіднику вільні електричні заряди за допомогою зовнішнього електричного поля будуть перерозподілятись по поверхні провідника до тих пір, доки своє внутрішнє електричне поле повністю не компенсує зовнішнє електричне поле. При цьому в першу чергу будуть перерозподілені додатково внесені електричні заряди.
3. Оскільки поверхня провідника є еквіпотенціальною, то елек-тричне поле , яке дорівнює , повинно бути перпендикулярним до поверхні в кожній точці провідника.
4. Поле на поверхні провідника не дорівнює нулю, однак це поле дорівнює нулю всередині провідника.
8.2. Електроємність окремого провідника. Конденсатори. Ємність конденсаторів різної форми
Надаючи провіднику різні електричні заряди можна виявити, що потенціал провідника при цьому змінюється пропорційно величині заряду, тобто
. (8.2.1)
Цю сталу величину було названо електричною ємністю провідника. Таким чином, електрична ємність провідника дорівнює
С = , (8.2.2)
де q – заряд провідника, (додатково наданий провіднику); j - потенціал, під яким перебуває його поверхня.
Якщо провіднику був переданий заряд в 1Кл, а його потенціал при цьому змінився на 1В, то ємність такого провідника дорівнює 1Ф (Фарад).
Ємність у 1Ф досить велика. Практично використовують значно менші, кратні значення ємності:
1мкФ = 10-6 Ф; 1пФ = 10-12 Ф.
У випадку провідника сферичної форми електрична ємність буде дорівнювати:
С = ,
але ,
тому
. (8.2.3)
Ємність сферичного провідника визначається величиною його радіуса.
Для прикладу знайдемо радіус сферичного провідника, ємність якого буде дорівнювати 1Ф. З формули (8.2.3) маємо
.
Радіус такої кулі перевищує радіус Землі у 1400 разів.
Для практичних цілей ємність окремого провідника використовувати недоцільно через великі розміри. У цьому випадку використовують системи із двох окремих провідників, які називаються конденсаторами. Обидва провідники конденсатора заряджаються рівними за величиною і протилежними за знаком електричними зарядами.
Конденсатори бувають різні. Найбільш широко використовуються плоскі , циліндричні й сферичні конденсатори.
Для кожного типу конденсаторів справедливе співвідношення
, (8.2.4)
де - різниця потенціалів між двома окремими провідниками конденсатора; q – заряд кожного знаку на провідниках.
Знайдемо ємності окремих типів конденсаторів.
Плоский конденсатор
На рис.8.2 схематично зображений плоский конденсатор.
Рис.8.2
Плоский конденсатор складається із двох паралельних пластин площею S кожна, які розміщені на відстані d одна від одної. Заряди окремих пластин мають однакову поверхневу густину s, тобто
. (8.2.5)
Для знаходження різниці потенціалів у формулі (8.2.4) та визначення ємності плоского конденсатора скористаємось формулою (7.3.2) зв’язку напруженості електричного поля із потенціалом, тобто
Е = . (8.2.6)
Напруженість електричного поля між двома пластинами плоского конденсатора перевищує напруженість електричного поля біля однієї площини у два рази (поля обох пластин збігаються за напрямком, а тому у відповідності з принципом суперпозиції накладаються). Тому у відповідності з формулою (6.3.3) маємо
, (8.2.7)
де - поверхнева густина зарядів.
Підставимо (8.2.7) у (8.2.6) і інтегруємо одержаний результат
,
,
. (8.2.8)
Підставимо (8.2.8) у (8.2.4), одержимо
.
Ємність плоского конденсатора буде дорівнювати
. (8.2.9)
З формули (8.2.9) видно, що величина ємності плоского конденсатора зростає при зростанні відносної діелектричної сталої e і площі пластини конденсатора S, а також при зменшенні відстані між пластинами конденсатора d. Електрична константа вакууму дорівнює e0 = 8,85 ·10-12 Ф/м.
Циліндричний конденсатор
Циліндричний конденсатор складається із двох циліндрів, розміщених один у одному, розділених шаром діелектричної речовини (рис.8.3).
Рис 8.3
Для знаходження ємності циліндричного конденсатора скористаємось формулами (8.2.4), (8.2.6) і (6.3.6). У цьому випадку внутрішню циліндричну частину можна вважати тонким, дуже довгим циліндром. Напруженість електричного поля біля такого циліндра на відстані r від осі у відповідності з формулою (6.3.6) буде дорівнювати (рис.8.4)
. (8.2.10)
Рис.8.4
Підставимо вираз (8.3.10) у формулу (8.2.6), одержимо
.
Інтегруємо цей вираз в межах r від r1 до r2
,
(8.2.11)
де .
Вираз (8.2.11) підставимо у (8.2.4), одержимо ємність циліндрич-ного конденсатора
(8.2.12)
В цій формулі r1, r2 і h – параметри конденсатора у відповідності з рис.8.3 і 8.4. Діелектрична проникність e - залежить від властивостей діелектрика між циліндрами. Константа e0 = 8,85 ·10-12 Ф/м.
Сферичний конденсатор
Сферичний конденсатор складається з двох сферичних поверхонь, розділених шаром діелектричної речовини з діелектричною проникністю e (рис.8.5).
Рис.8.5
Напруженість електричного поля на відстані r можна розрахувати, як для точкового заряду
. (8.2.13)
Знайдемо ємність сферичного конденсатора за аналогією з розрахунками ємності плоского і циліндричного конденсаторів.
,
,
або
(8.2.14)
Вираз (8.2.14) підставимо у (8.2.4), одержимо ємність сферичного конденсатора
. (8.2.15)
Конденсатори різних типів мають досить широке практичне використання.
З’єднання конденсаторів
У випадку, коли до батареї конденсаторів прикладена стала різниця потенціалів ( Dj = const), будемо мати:
а). паралельне з’єднання конденсаторів
. (8.2.16)
б). послідовне з’єднання конденсаторів
,
звідки
. (8.2.17)
8.3. Енергія взаємодії електричних зарядів. Енергія окремого провідника і конденсатора
Енергія системи нерухомих точкових електричних зарядів
Розглянемо систему двох електричних зарядів q1 і q2, які перебувають на відстані r один від одного, кожний з яких в полі другого заряду має потенціальну енергію
;
,
де φ1,2 – потенціал першого заряду в полі другого заряду; φ2,1 – потенціал другого заряду в полі першого заряду.
Оскільки енергії і - однакові, то енергія системи нерухомих електричних зарядів q1 і q2 буде дорівнювати
. (8.3.1)
Якщо взаємодіють n електричних зарядів, то за аналогією з (8.3.1) будемо мати
. (8.3.2)
де - потенціал в точці розміщення і-го заряду, створюваний всіма n зарядами цієї системи.
Вираз (8.3.2) дає можливість розрахувати енергію взаємодії будь-якої системи статичних зарядів.
Енергія зарядженого окремого провідника
Розглянемо окремий провідник, заряд, ємність і потенціал якого відповідно дорівнюють q, C, j. Для зміни потенціалу провідника на величину dj слід виконати елементарну роботу по перенесенню заряду dq з безмежності в дану точку провідника
.
Щоб зарядити провідник від нульового потенціалу до величини j, необхідно виконати роботу
. (8.3.3)
Тому енергія окремого зарядженого провідника визначається формулою
,
а з врахуванням співвідношення , будемо мати
. (8.3.4)
Енергія зарядженого конденсатора
Для знаходження енергії зарядженого конденсатора слід розрахувати роботу переміщення заряду q з однієї пластини на іншу пластину.
Елементарна робота зовнішніх сил перенесення малого заряду dq з обкладки 2 конденсатора на обкладку 1 буде дорівнювати
.
Робота переміщення заряду q визначається інтегралом
.
З використанням співвідношення , енергія зарядженого конденсатора буде дорівнювати
. (8.3.5)
Оскільки різницю потенціалів двох точок поля можна виразити однією буквою U, то формули (8.3.5) матимуть вигляд:
. (8.3.6)
8.4. Енергія електростатичного поля. Густина енергії електро-статичного поля
У загальному випадку електричну енергію системи заряджених нерухомих тіл, провідників і непровідників, можна знайти за формулою:
(8.4.1)
де s і r - відповідно поверхнева і об’ємна густини вільних електричних зарядів; j - потенціал результуючого поля всіх вільних і зв’язаних електричних зарядів, заряджених поверхонь і об’ємів.
Інтегрування виразу (8.4.1) слід здійснювати по всім зарядженим поверхням S і по всьому об’єму V заряджених тіл системи.
Для прикладу знайдемо енергію поля плоского конденсатора. Скористаємось формулою (8.3.6), а саме
.
Для плоского конденсатора
, U=Ed,
де Е – напруженість поля між пластинами конденсатора; d – відстань між пластинами.
В цьму випадку енергія поля зарядженого конденсатора буде дорівнювати:
, (8.4.2)
де V = Sd – об’єм діелектрика; Е – напруженість електричного поля в діелектрику.
Густину енергії електричного поля в діелектрику можна знайти, поділивши вираз (8.4.2) на об’єм V, тобто
. (8.4.3)
За допомогою формули (8.4.3) знаходять густину енергії електричного поля в об’ємі діелектрика. Її інколи називають об’ємною густиною енергії поля конденсатора.
Вираз (8.4.3) показує, що вся енергія зарядженого конденсатора локалізована в електростатичному полі діелектрика. Цією формулою можна скористатись і для неоднорідних полів.
ЛЕКЦІЯ 9
ЕЛЕКТРИЧНЕ ПОЛЕ В ДІЕЛЕКТРИКУ
9.1. Зв’язані і вільні електричні заряди. Поляризованність діелектрика . Діелектрична сприйнятливість.
9.2. Вектор електричного зміщення. Теорема Гаусса для поля в діелектрику. Діелектрична проникність.
9.3. Поле в діелектрику. Умови на межі двох діелектриків.
9.4. Сегнетоелектрики (самостійно).
9.1. Зв’язані й вільні електричні заряди. Поляризованість
діелектрика. Діелектрична сприйнятливість
Діелектриками (або ізоляторами) називають речовини, які практично не проводять електричний струм. В таких речовинах відсутні вільні електричні заряди.
Однак, це зовсім не означає, що зовнішнє електричне поле не діє на діелектрики. За результатами дії електричного поля на діелектрики останні можна поділити на три групи:
а) полярні діелектрики H2O, NH3, BaTiO3, …
б) неполярні діелектрики H2, N2, CO2, CH4,…
в) іонні кристали NaCl, KCl,…