Причины отказов и виды расчётов червячных передач

Причи­нами отказа передачи могут быть: усталостное выкрашивание на боковых поверхностях зубьев колеса для материалов, стойких к заеданию; износ зубьев колеса; заедание при твёрдых материалах колёс; пластическая деформация поверхностей зубьев колеса (при перегрузках); усталостная поломка зубьев колеса (в результате изнашивания).

Основное значение для червячных передач имеют расчёты на сопро­тивление усталостному выкрашиванию, износу и заеданию. Воснову расчё­та, как и для зубчатых передач, положена формула Г. Герца. Искомый параметр — межосевое расстояние передачи aw. При проектировочном расчёте

Причины отказов и виды расчётов червячных передач - student2.ru

Обычно напряжения изгиба не определяют размеры передачи и являют­ся значимыми только при числе зубьев колеса z2 > 90. Условие проверки проч­ности на изгиб зуба колеса имеет вид : σF ≤ [σF]. Допускаемые контактные на­пряжения для оловянистых бронз [σH]= 130... 160 МПа, а допускаемые изгибные напряжения для бронз [σF ] = 35.. .75 МПа.

Значительное тепловыделение при работе червячной передачи приводит к нагреву масла, потере им защитных свойств и опасности заедания в передаче, поэтому проводят расчёт передачи на теплостойкость по условию

Причины отказов и виды расчётов червячных передач - student2.ru

где t0 - температура воздуха в помещении; обычно принимают t0 = 20 °С;

N1 - мощность на валу червяка, кВт;

η - КПД передачи;

Кт - коэффициент теплопередачи с поверхности корпуса; при естествен­ном охлаждении Кт = 12...18 Вт/(м2∙°С), при установке вентилятора на валу червяка Кт = 18...30 Вт/(м2∙°С), при охлаждении смазки в картере проточной водой Кт = 30...200 Вт/(м2∙°С);

S - поверхность теплопередачи корпуса (без учёта площади днища кор­пуса редуктора), м2;

ψ - коэффициент, учитывающий теплоотвод через днище корпуса редук­тора; при установке корпуса на бетонном основании ψ = 0, при установке корпуса на металлическом основании ψ = 0,3.3.

ЛЕКЦИЯ №15

Планетарные и волновые зубчатые передачи. Передачи Новикова.

Общие сведения

Планетарными называют передачи, имеющие зубчатые колеса с подвижными осями. Наиболее распространенная простая одно­рядная планетарная передача (рис. 98) состоит из центрального колесаа с наружными зубьями, неподвижного центрального колеса b с внутренними зубьями, сателлитовg - колес с наружными зубья­ми, зацепляющихся одновременно са иb (здесь число сателлитов nw = 3), и водилаh, на котором закреплены оси сателлитов. Водило соединено с тихоходным валом. В планетарной передаче одно коле­со остановлено (соединено с корпусом).

Причины отказов и виды расчётов червячных передач - student2.ru
Причины отказов и виды расчётов червячных передач - student2.ru

Рис. 98. Планетарная передача.

1- солнечное колесо, 2 - сателлиты, 3- корончатое колесо, 4 - водило.

При неподвижном колесеb вращение колесаа вызывает враще­ние сателлитаg относительно собственной оси, а обкатывание са­теллита по колесуb перемещает его ось и вращает водилоh. Сател­лит таким образом совершает вращение относительно водила и вме­сте с водилом вокруг центральной оси, т.е. совершает движение, по­добное движению планет. Поэтому передачи называют планетарными.

При неподвижном колесеb движение передают чаще всего от колесаа к водилуh; возможна передача движения от водилаh к ко­лесуа.

Основными звеньями называют такие, которые нагружены внешним вращающим моментом. Для передачи, изображенной на рис.98, основные звеньяа, b, h, т.е. два центральных колеса (2К) и водило (h). Такие передачи условно обозначают 2К - h. Внешние моменты на звеньях обозначают: Та, Ть, Th.

В планетарных передачах применяют не только цилиндриче­ские, но и конические колеса с прямым или косым зубом.

Если в планетарной передаче подвижны все звенья, т.е. оба ко­леса и водило, то такую передачу называютдифференциальной. С помощью дифференциального механизма можно суммировать дви­жение двух звеньев на одном или раскладывать движение одного звена на два других. Например, в дифференциале ведущего моста автомобиля движение от водилаh передают одновременно колесам а иh, что позволяет при повороте одному колесу вращаться быст­рее другого.

Достоинства планетарных передач.

1. Малые габариты и масса вследствие передачи мощности по нескольким потокам, число кото­рых равно числу сателлитов. При этом нагрузка в каждом зацепле­нии уменьшена в несколько раз.

2. Удобство компоновки в машинах благодаря соосности ведущего и ведомого валов.

3. Работа с мень­шим шумом по сравнению с обычными зубчатыми передачами, что связано с меньшими размерами колес и замыканием сил в механиз­ме. При симметричном расположении сателлитов силы в передаче взаимно уравновешиваются.

4. Малые нагрузки на валы и опоры, что упрощает конструкцию опор и снижает потери в них.

5. Воз­можность получения больших передаточных отношений (до 10000)при не­большом числе зубчатых колес и малых габаритах.

Недостатки. 1. Повышенные требования к точности изготовле­ния и монтажа передачи. 2. Большее число деталей (подшипников), более сложная сборка. 3. Для нарезания колес с внутренними зубья­ми требуются зубодолбежные станки, парк которых меньше, чем зубофрезерных.

Планетарную передачуприменяют как: редуктор в силовых передачах и приборах; коробку передач, передаточное отношение в которой изменяют путем поочередного торможения различных звеньев (например, водила или одного из колес); дифференциал в автомобилях, тракторах, станках, приборах.

где через z обозначены числа зубьев соответствующих колес.

Часто применяют планетарную передачу, совмещенную с элек­тродвигателем (мотор-редуктор, мотор-колесо).

Передаточное отношение

При определении передаточного отношения планетарной пере­дачи используют метод остановки водила (метод Виллиса). По это­му методу всей планетарной передаче мысленно сообщают допол­нительно вращение с угловой скоростью водила ωh, но в обратном направлении. При этом водило как бы останавливается, а закреплен­ное колесо освобождается. Получается так называемыйобращен­ный механизм, представляющий собой обычную непланетарную передачу, в которой геометрические оси всех колес неподвижны. Сателлиты при этом становятся промежуточными (паразитными) колесами, т.е. колесами, не влияющими на передаточное отношение механизма. Передаточное отношение в обращенном механизме оп­ределяют как в двухступенчатой передаче с одним внешним и одним внутренним зацеплением.

Здесь существенное значение имеетзнак передаточного от­ношения. Передаточное отношение и считают положительным, ес­ли в обращенном механизме ведущее и ведомое звенья вращаются в одну сторону, и отрицательным, если в разные стороны. Так, для обращенного механизма передачи при ведущем колесеа и ведомом колесе b, см. рис. 98, имеем:

Причины отказов и виды расчётов червячных передач - student2.ru

где через z обозначены числа зубьев соответствующих колёс

В рассматриваемом обращенном механизме знак минус показы­вает, что колеса g и b вращаются в обратную сторону по отноше­нию к колесу а.

С другой стороны, мысленная остановка водила при передаче движения от a к b равноценна вычитанию его угловой скорости ωh, из угловых скоростей колес. Тогда для обращенного механизма этой передачи

Причины отказов и виды расчётов червячных передач - student2.ru

где (ωаh) и (ωb – ωh) - соответственно угловые скорости колес a и b относительно водила h; za и zb - числа зубьев колес a и b.

Верхний индекс (h) в обозначении передаточного отношения соответствует обозначению невращающегося звена, нижние (a и b) - соответственно ведущему и ведомому звеньям.

Таким образом, по формуле (15.1) вычисляют передаточное от­ношение для планетарной передачи, у которой неподвижно водило h(ωh = 0), колесо a является ведущим, колесо b - ведомым.

В планетарной передаче любое основное звено может быть ос­тановлено.

Для планетарной передачи, у которой колесо b закреплено в корпусе неподвижно (ωb = 0), колесо a является ведущим, а водило h - ведомым, из формулы (15.1) получим:

Причины отказов и виды расчётов червячных передач - student2.ru или Причины отказов и виды расчётов червячных передач - student2.ru

Отсюда следует

Причины отказов и виды расчётов червячных передач - student2.ru

Для планетарной передачи, у которой колесо b закреплено в корпусе неподвижно (ωb = 0), водило h является ведущим, а колесо a - ведомым, имеем:

Причины отказов и виды расчётов червячных передач - student2.ru

Таким образом, в зависимости от остановленного звена можно получить различные значения передаточного отношения планетар­ной передачи. Это свойство планетарных передач используют в ко­робках передач.

В планетарных передачах широко применяют внутреннее зубчатое зацепление с углом aw = 30о.

Для обеспечения сборки планетарных передач необходимо соблюдать условие соосности (совпадение геометрических центров колёс); условие сборки (сумма зубьев центральных колёс кратна числу сателлитов) и соседства (вершины зубьев сателлитов не соприкасаются друг с другом).

Зубчатые колёса планетарных передач рассчитываются по тем же законам, что и колёса обычных цилиндрических передач.

Наши рекомендации