Импульс. Закон сохранения импульса

И́мпульс (количество движения) – векторная физическая величина, являющаяся мерой механического движения тела.

Импульс. Закон сохранения импульса - student2.ru Рис. 38.

В классической механике импульс материальной точки равен произведению массы Импульс. Закон сохранения импульса - student2.ru точки на еёскорость Импульс. Закон сохранения импульса - student2.ru , направление импульса совпадает с направлением вектора скорости Импульс. Закон сохранения импульса - student2.ru (рис. 38): Импульс. Закон сохранения импульса - student2.ru .

В СИ: Импульс. Закон сохранения импульса - student2.ru или Импульс. Закон сохранения импульса - student2.ru .

В классической механике полным импульсом системы материальных точек называется векторная величина, равная сумме произведений масс материальных точек на их скорости: Импульс. Закон сохранения импульса - student2.ru , соответственно величина Импульс. Закон сохранения импульса - student2.ru называется импульсом одной материальной точки. Это векторная величина, направленная в ту же сторону, что и скорость частицы. Если мы имеем дело с телом конечного размера, не состоящим из дискретных материальных точек, для определения его импульса необходимо разбить тело на малые части, которые можно считать материальными точками и просуммировать по ним, в результате получим: Импульс. Закон сохранения импульса - student2.ru .

В релятивистской механике Импульс. Закон сохранения импульса - student2.ru трёхмерным импульсом системы невзаимодействующих материальных точек называется величина:

Импульс. Закон сохранения импульса - student2.ru ,

где Импульс. Закон сохранения импульса - student2.ru –масса Импульс. Закон сохранения импульса - student2.ru й материальной точки.

История появления термина

Ещё в первой половине XVII века понятие импульса введено Рене Декартом (рис.39). Так как физическое понятие массы в то время отсутствовало, он определил импульс как произведение «величины тела на скорость его движения». Позже такое определение было уточнено Исааком Ньютоном. Согласно Ньютону, «количество

Импульс. Закон сохранения импульса - student2.ru Рис. 39. Декарт (Descartes) Рене (латинизированное –Картезий; Cartesius) (1596-1650), французский философ, математик, физик и физиолог, и философ, создатель знаменитого метода координат.

движения есть мера такового, устанавливаемая пропорционально скорости и массе».

Закон сохранения импульса

В инерциальной системе отсчёта импульс замкнутой системы частиц остаётся постоянным: Импульс. Закон сохранения импульса - student2.ru .

В классической механике закон сохранения импульса обычно выводится как следствие законов Ньютона. Из законов Ньютона можно показать, что при движении в пустом пространстве импульс сохраняется во времени, а при наличии взаимодействия скорость его изменения определяется суммой приложенных сил.

Из определения закона сохранения импульса следует, что он строго выполняется лишь в идеальном случае.

Как и любой из фундаментальных законов сохранения, закон сохранения импульса связан, согласно теореме Нётер, с одной из фундаментальных симметрий,–однородность пространства[10].

Законы Ньютона

Законы Ньютона – основные законы динамики. Они не выводятся ни из каких более общих теоретических положений, а являются обобщением большого числа опытных фактов. В классической механике эти законы играют такую же роль, как и известные постулаты в геометрии Евклида. Впервые в полной мере сформулированы Исааком Ньютоном в книге «Математические начала натуральной философии» (1687 год).

Законы Ньютона строго выполняются лишь в инерциальных системах отсчёта.

Сам Ньютон в качестве такой системы отсчёта выбрал систему отсчёта, связанную с т. н. «абсолютным пространством»[11]. Современная физика отказалась от концепции абсолютного пространства и времени классической физики Ньютона. Релятивистская теория продемонстрировала, что пространство и время относительны.

Первый закон Ньютона

Первый закон Ньютона постулирует существование инерциальных систем отсчета. Поэтому он также известен как закон инерции.

В современной физике первый закон Ньютона принято формулировать в следующем виде:

Существуют такие системы отсчёта, называемые инерциальными, относительно которых материальные точки, когда на них не действуют никакие силы (или действуют силы взаимно уравновешенные), находятся в состоянии покоя или равномерного прямолинейного движения.

Или аналогичная формулировка:

В отсутствие внешних воздействий (сил) или когда действующие силы взаимно уравновешены, материальная точка сохраняет неизменным состояние своего движения или покоя относительно инерциальной системы отсчёта.

Такое движение называется движением по инерции.

Системы отсчёта, в которых выполняется закон инерции, называют инерциальными системами отсчёта. Все другие системы отсчёта (например, вращающиеся или движущиеся с ускорением) называются соответственно неинерциальными. Проявлением неинерциальности в них является возникновении фиктивных сил, называемых «силами инерции».

Второй закон Ньютона

Второй закон Ньютона – дифференциальный закон движения, описывающий взаимосвязь между приложенной к материальной точке силой и получающимся от этого ускорением этой точки. Фактически, второй закон Ньютона вводит массу как меру проявления инертности материальной точки в выбранной инерциальной системе отсчёта.

Масса материальной точки при этом полагается величиной постоянной во времени и независящей от каких-либо особенностей её движения и взаимодействия с другими телами.

В современной формулировке второй закон Ньютона утверждает:

В инерциальной системе отсчета (ИСО) ускорение, которое получает материальная точка, прямо пропорционально приложенной к ней силе и обратно пропорционально её массе (рис.40; 41):

Импульс. Закон сохранения импульса - student2.ru ,

где Импульс. Закон сохранения импульса - student2.ru –ускорение материальной точки; Импульс. Закон сохранения импульса - student2.ru –сила, приложенная к материальной точке; Импульс. Закон сохранения импульса - student2.ru –масса материальной точки.

Импульс. Закон сохранения импульса - student2.ru Рис. 40.
Импульс. Закон сохранения импульса - student2.ru Рис.41.

В случае, когда масса материальной точки меняется со временем, второй закон Ньютона формулируется с использованием понятия импульс:

В инерциальной системе отсчета скорость изменения импульса материальной точки равна действующей на неё силе:

Импульс. Закон сохранения импульса - student2.ru .

где Импульс. Закон сохранения импульса - student2.ru –импульс точки, Импульс. Закон сохранения импульса - student2.ru –производная импульса по времени, скорость изменения импульса.

Действительно, Импульс. Закон сохранения импульса - student2.ru

Однако, вместе с таким расширительным толкованием уравнения приходится существенным образом модифицировать принятые ранее определения и изменять смысл таких фундаментальных понятий, как материальная точка, импульс и сила.

Замечания:

1. Когда на материальную точку действуют несколько сил, с учётом принципа суперпозиции, второй закон Ньютона записывается в виде: Импульс. Закон сохранения импульса - student2.ru или, Импульс. Закон сохранения импульса - student2.ru .

2. Второй закон Ньютона, как и вся классическая механика, действителен только для движения тел со скоростями, много меньшими скорости света. При движении тел со скоростями, близкими к скорости света ( Импульс. Закон сохранения импульса - student2.ru , используется релятивистское обобщение второго закона, получаемое в рамках специальной теории относительности.

3. Следует учитывать, что нельзя рассматривать частный случай (при Импульс. Закон сохранения импульса - student2.ru ) второго закона как эквивалент первого, так как первый закон постулирует существование ИСО, а второй формулируется уже в ИСО.

Третий закон Ньютона

Механическое воздействие тел друг на друга носит характер взаимодействия. Об этом утверждает третий закон Ньютона:

Импульс. Закон сохранения импульса - student2.ru Рис. 42.

Две материальные точки действуют друг на друга с силами, которые численно равны и направлены в противоположные стороны вдоль прямой, соединяющей эти точки(рис. 42): Импульс. Закон сохранения импульса - student2.ru .

Одна из этих сил называется действующей, а другая–противодействующей.Силы, возникающие при взаимодействии тел, всегда имеют одинаковую природу. Они приложены к разным телам и поэтому не могут уравновешивать друг друга. Складывать по правилам векторного сложения можно только силы, приложенные к одному телу.

Пример.

1). В электростатике взаимодействие электрических зарядов подчиняется третьему закону Ньютона (рис. 43):

Импульс. Закон сохранения импульса - student2.ru Рис. 43.

4.6. Энергия

При движении механической системы меняются координаты и скорости входящих в неё тел. Однако существуют характеризующие систему величины, которые с течением времени остаются постоянными. Такими величинами являются в механике энергия, импульс и момент импульса.

Эне́ргия Импульс. Закон сохранения импульса - student2.ru –скалярная физическая величина, являющаяся единой мерой различных форм движения и взаимодействия материи, мерой перехода движения материи из одних форм в другие.

В СИ: Импульс. Закон сохранения импульса - student2.ru .

Термин «энергия» происходит от слова energeia, которое впервые появилось в работах Аристотеля(др.-греч. ἐνέργεια– «действие, деятельность, сила, мощь»).В 1807 году Томас Юнг первым использовал термин «энергия» в современном смысле этого слова взамен понятия живая сила.

Энергия системы является функцией состояния, а не процесса: она не зависит от того, каким образом достигнуто данное состояние.

С фундаментальной точки зрения энергия представляет собой интеграл движения (то есть сохраняющуюся при движении величину), связанный, согласно теореме Нётер, с однородностью времени. Таким образом, введение понятия энергии как физической величины целесообразно только в том случае, если рассматриваемая физическая система однородна во времени.

В соответствии с различными формами движения материи выделяют различные виды энергии: механическую, внутреннюю, электромагнитную, химическую, ядерную и др.

Механика различает потенциальную энергию (или, в более общем случае, энергию взаимодействия тел или их частей между собой или с внешними полями) и кинетическую энергию (энергия движения). Их сумма называется полной механической энергией.

Энергией обладают все виды полей. По этому признаку различают: электромагнитную (разделяемую иногда на электрическую и магнитную энергии), гравитационную и ядерную энергии (также может быть подразделяться на энергию слабого и сильного взаимодействий).

Термодинамика рассматривает внутреннюю энергию и иные термодинамические потенциалы.

В химии рассматриваются такие величины, как энергия связи и энтальпия, имеющие размерность энергии, отнесённой к количеству вещества.

В механике рассматривается только механическая энергия.

Механическая энергия является мерой движения и взаимодействия механических объектов (материальных точек, твёрдых тел).

Согласно специальной теории относительности между массой и энергией существует связь, выражаемая знаменитой формулой Эйнштейна

Импульс. Закон сохранения импульса - student2.ru ,

где Импульс. Закон сохранения импульса - student2.ru – энергия системы, Импульс. Закон сохранения импульса - student2.ru – её масса, Импульс. Закон сохранения импульса - student2.ru –скорость света в вакууме.

Работа силы

Для количественного описания процесса обмена энергией между взаимодействующими телами в механике используется понятие работы силы, приложенной к рассматриваемому телу. Работа силы – это энергетическая характеристика движения.

Понятие работы в физике отличается от её обыденного, физиологического понимания как всякого усилия, мускульного напряжения.

Импульс. Закон сохранения импульса - student2.ru Рис. 44.

Пусть материальная частица М под действием переменной силы Импульс. Закон сохранения импульса - student2.ru перемещается по криволинейной траектории из точки S1 в точку S2 (рис. 44). Выделим элементарный участок пути dS, на котором силу можно считать постоянной, а перемещение прямолинейным.

Уравнение второго закона Ньютона для частицы М в этом случае имеет вид: Импульс. Закон сохранения импульса - student2.ru .Умножив скалярно обе части этого равенства на скорость частицы Импульс. Закон сохранения импульса - student2.ru , получим: Импульс. Закон сохранения импульса - student2.ru , где Импульс. Закон сохранения импульса - student2.ru . В данном случае, Импульс. Закон сохранения импульса - student2.ru –вектор перемещения. Тогда можно записать: Импульс. Закон сохранения импульса - student2.ru , где Импульс. Закон сохранения импульса - student2.ru [12] – элементарная работа силы на перемещении Импульс. Закон сохранения импульса - student2.ru .

Элементарной работой Импульс. Закон сохранения импульса - student2.ru силы Импульс. Закон сохранения импульса - student2.ru на перемещении Импульс. Закон сохранения импульса - student2.ru называется скалярное произведение Импульс. Закон сохранения импульса - student2.ru .

Работа на пути конечной длины Импульс. Закон сохранения импульса - student2.ru выражается через криволинейный интеграл:

Импульс. Закон сохранения импульса - student2.ru .

Механическая работа– это скалярная физическая величина, являющаяся количественной мерой действия силы или сил на тело или систему, зависящая от численной величины, направления силы (сил) и от перемещения точки (точек), тела или системы.

Если рассматриваемая сила постоянна Импульс. Закон сохранения импульса - student2.ru , а тело, к которому она приложена, движется поступательно и прямолинейно, то работой, совершаемой силой Импульс. Закон сохранения импульса - student2.ru при прохождении телом пути Импульс. Закон сохранения импульса - student2.ru , называют величину:

Импульс. Закон сохранения импульса - student2.ru ,

Импульс. Закон сохранения импульса - student2.ru Рис. 45.

где Импульс. Закон сохранения импульса - student2.ru –угол между вектором силы Импульс. Закон сохранения импульса - student2.ru и направлением движения тела (рис. 45).

То есть, работа (этой силы) равна произведению величины проекции вектора силы Импульс. Закон сохранения импульса - student2.ru на направление движения и величины совершённого перемещения Импульс. Закон сохранения импульса - student2.ru .

Работа величина алгебраическая:

Импульс. Закон сохранения импульса - student2.ru при Импульс. Закон сохранения импульса - student2.ru –движущая сила; Импульс. Закон сохранения импульса - student2.ru при Импульс. Закон сохранения импульса - student2.ru –тормозящая сила.

Если на тело одновременно действуют несколько сил, то работа, совершаемая ими, равна сумме работ каждой из сил порознь: Импульс. Закон сохранения импульса - student2.ru .

Работа не совершается в следующих случаях:

1. Импульс. Закон сохранения импульса - student2.ru , т.е. на тело сила не действует (например, движение по инерции);

2. Импульс. Закон сохранения импульса - student2.ru , т.е. тело покоится;

3. Импульс. Закон сохранения импульса - student2.ru , т.е. вектор силы перпендикулярен к направлению вектора перемещения Импульс. Закон сохранения импульса - student2.ru .

Импульс. Закон сохранения импульса - student2.ru Рис. 46.

Графически работа определяется по площади криволинейной фигуры под графиком Импульс. Закон сохранения импульса - student2.ru (рис. 46).

Мощность

Мощность – скалярная физическая величина, численно равная работе, совершаемой за единицу времени:

Импульс. Закон сохранения импульса - student2.ru , Импульс. Закон сохранения импульса - student2.ru .

Кинетическая энергия

Кинетическая энергия – энергия движущегося тела.

Обозначается: Импульс. Закон сохранения импульса - student2.ru ; Импульс. Закон сохранения импульса - student2.ru ; Импульс. Закон сохранения импульса - student2.ru ; Импульс. Закон сохранения импульса - student2.ru .

Пусть частица массой m движется под действием силы Импульс. Закон сохранения импульса - student2.ru Уравнение второго закона Ньютона для частицы Импульс. Закон сохранения импульса - student2.ru в этом случае имеет вид: Импульс. Закон сохранения импульса - student2.ru . Умножив скалярно обе части этого равенства на скорость частицы Импульс. Закон сохранения импульса - student2.ru , получим: Импульс. Закон сохранения импульса - student2.ru .Учтем, что Импульс. Закон сохранения импульса - student2.ru .Тогда: Импульс. Закон сохранения импульса - student2.ru или Импульс. Закон сохранения импульса - student2.ru , где Импульс. Закон сохранения импульса - student2.ru –кинетическая энергия тела.

Тогда кинетическая энергия тела выражается по формуле:

Импульс. Закон сохранения импульса - student2.ru ,

где Импульс. Закон сохранения импульса - student2.ru – импульс тела.

Кинетическая энергия – величина относительная, всегда выполняется условие: Импульс. Закон сохранения импульса - student2.ru .

Так как, Импульс. Закон сохранения импульса - student2.ruИмпульс. Закон сохранения импульса - student2.ru Тогда Импульс. Закон сохранения импульса - student2.ru , а при конечном перемещении из точки 1 в точку 2: Импульс. Закон сохранения импульса - student2.ru .

Тогда в общем случае можно утверждать:

изменение кинетической энергии механической системы равно алгебраической сумме работ всех внешних и внутренних сил, действующих на эту систему Импульс. Закон сохранения импульса - student2.ru

Силовое поле

Материя существует в виде вещества и поля. Поле – переносчик взаимодействий между телами (гравитационное, электромагнитное поле, поле ядерных сил и т.п.).

В механике силовое поле – часть пространства, в каждой точке которой на помещенную туда материальную частицу действует сила, зависящая от координат частицы.

Силовое поле называется стационарным, если оно не изменяется со временем.

Потенциальное силовое поле

Стационарное силовое поле, в котором работа сил поля, действующих на материальную частицу, зависит только от начального и конечного положения частицы и не зависит от вида её траектории, называется потенциальным. Силы такого поля называются консервативными.

Если это условие не выполняется, то силовое поле не будет потенциальным (в частности, вихревым, как магнитное поле).

Потенциальными полями являются: гравитационное, электростатическое, поля центральных сил.

Импульс. Закон сохранения импульса - student2.ru Рис. 47.
L

Теорема: в потенциальном поле работа сил поляна любом замкнутом пути Импульс. Закон сохранения импульса - student2.ru равна нулю (рис. 47).

Доказательство

Так как поле потенциальное, то Импульс. Закон сохранения импульса - student2.ru , но Импульс. Закон сохранения импульса - student2.ru . Тогда: Импульс. Закон сохранения импульса - student2.ru .

Обратная теорема: если работа сил поля на любом замкнутом пути Импульс. Закон сохранения импульса - student2.ru равна нулю, то поле потенциальное.

Доказательство

По условию: Импульс. Закон сохранения импульса - student2.ru , тогда: Импульс. Закон сохранения импульса - student2.ru , но Импульс. Закон сохранения импульса - student2.ru , тогда: Импульс. Закон сохранения импульса - student2.ru .

Работа сил потенциального поля на произвольном замкнутом пути Импульс. Закон сохранения импульса - student2.ru выражается через криволинейный интеграл:

Импульс. Закон сохранения импульса - student2.ru ,

где Импульс. Закон сохранения импульса - student2.ru – циркуляция вектора Импульс. Закон сохранения импульса - student2.ru вдоль замкнутой кривой Импульс. Закон сохранения импульса - student2.ru .

Условие: Импульс. Закон сохранения импульса - student2.ru является необходимым и достаточным условием потенциальности поля.

Потенциальная энергия

Для частицы, находящейся в потенциальном поле, можно ввести понятие потенциальной энергии.

Потенциальная энергия – часть механической энергии системы, зависящая от взаимного расположения материальных точек, составляющих эту систему, и от их положения во внешнем силовом поле.

Обозначается: Импульс. Закон сохранения импульса - student2.ru ; Импульс. Закон сохранения импульса - student2.ru ; Импульс. Закон сохранения импульса - student2.ru ; Импульс. Закон сохранения импульса - student2.ru ; Импульс. Закон сохранения импульса - student2.ru .

Т.е. потенциальная энергия есть функция координат частицы в поле: Импульс. Закон сохранения импульса - student2.ru или Импульс. Закон сохранения импульса - student2.ru .

Импульс. Закон сохранения импульса - student2.ru Рис. 48.

Пусть материальная частица перемещается в потенциальном поле сил из разных Импульс. Закон сохранения импульса - student2.ru –тых точек в фиксированную точку 0 (рис. 48). Т.к. поле потенциальное, то работа сил поля при фиксированной точке 0 зависит только от положения Импульс. Закон сохранения импульса - student2.ru –той точки. Найдём работу сил поля при перемещении частицы из точки 1 в точку 2. Т.к. работа не зависит от пути, выберем путь, проходящий через точку 0. Тогда работа на пути Импульс. Закон сохранения импульса - student2.ru может бытьпредставлена в виде: Импульс. Закон сохранения импульса - student2.ru . Или с учётом того, что Импульс. Закон сохранения импульса - student2.ru , получаем: Импульс. Закон сохранения импульса - student2.ru , где Импульс. Закон сохранения импульса - student2.ru – убыль потенциальной энергии.

В случае элементарной работы: Импульс. Закон сохранения импульса - student2.ru , т.е. работа сил потенциального поля (консервативных сил) равна убыли потенциальной энергии частицы в данном поле.

Частице, находящейся в точке 0 поля, можно приписать любое наперёд выбранное значение потенциальной энергии. Математически это выражается в том, что потенциальная энергия Импульс. Закон сохранения импульса - student2.ru – это функция, которая определяется с точностью до некоторой произвольной постоянной. Однако это обстоятельство несущественно, т.к. во все формулы входит только разность значений потенциальных энергий в двух положениях частицы. Поэтому произвольная постоянная, одинаковая для всех точек поля, выпадает. Это соответствует тому обстоятельству, что путём измерения работы может быть определена лишь разность потенциальных энергий в двух точках поля, но не её абсолютное значение.

Таким образом, потенциальная энергия – величина относительная, т.е. потенциальная энергия может быть как положительной, так и отрицательной или равной нулю величиной.

В отличие от кинетической энергии, где имеется каноническая формула для расчёта, в случае потенциальной энергии, т.к. она зависит от конфигурации системы и её положения во внешнем силовом поле, такой единой формулы нет.

Пример.

1. Потенциальная энергия упругой деформации.

Импульс. Закон сохранения импульса - student2.ru Рис.49.Растянутая пружина. Направление внешней силы Импульс. Закон сохранения импульса - student2.ru совпадает с направлением перемещения Импульс. Закон сохранения импульса - student2.ru , где Импульс. Закон сохранения импульса - student2.ru – жесткость пружины Импульс. Закон сохранения импульса - student2.ru .

Примером силы, модуль которой зависит от координаты, может служить сила упругости пружины, подчиняющаяся закону Гука. Для того, чтобы растянуть пружину, к ней нужно приложить внешнюю силу Импульс. Закон сохранения импульса - student2.ru ,модуль которой пропорционален удлинению пружины Импульс. Закон сохранения импульса - student2.ru (рис.49).

Импульс. Закон сохранения импульса - student2.ru Рис. 50. Зависимость модуля внешней силы от координаты при растяжении пружины.

Зависимость модуля внешней силы от координаты Импульс. Закон сохранения импульса - student2.ru изображаетсяна графике прямой линией (рис.50).

По площади треугольника на рис.50 можно определить работу, совершенную внешней силой, приложенной к правому свободному концу пружины: Импульс. Закон сохранения импульса - student2.ru ,где Импульс. Закон сохранения импульса - student2.ru – абсолютное удлинение пружины.

Этой же формулой выражается работа, совершенная внешней силой при сжатии пружины. В обоих случаях работа упругой силы Импульс. Закон сохранения импульса - student2.ru равна по модулю работе внешней силы Импульс. Закон сохранения импульса - student2.ru и противоположна ей по знаку.

Эта работа численно равна потенциальной энергии упругой деформации:

Импульс. Закон сохранения импульса - student2.ru .

2. Потенциальная энергия тела, поднятого над поверхностью Земли

Сила тяжести равна Импульс. Закон сохранения импульса - student2.ru и направлена по вертикали вниз. Вблизи поверхности Земли ее можно считать постоянной. При движении тела по вертикали вниз сила тяжести совпадает по направлению с перемещением. При переходе с высоты Импульс. Закон сохранения импульса - student2.ru над каким-то уровнем, от которого мы начинаем отсчет высоты, до высоты Импульс. Закон сохранения импульса - student2.ru над тем же уровнем (рис. 51), тело совершает перемещение, по абсолютной величине равное Импульс. Закон сохранения импульса - student2.ru .

Так как направления перемещения и силы совпадают, то работа силы тяжести положительна и равна: Импульс. Закон сохранения импульса - student2.ru .

Импульс. Закон сохранения импульса - student2.ru Рис. 51.

Высоты Импульс. Закон сохранения импульса - student2.ru и Импульс. Закон сохранения импульса - student2.ru не обязательно отсчитывать от поверхности Земли. Для начала отсчета высот можно выбрать любой уровень. Это может быть пол комнаты, стол или стул, это может быть и дно ямы, вырытой в земле, и т. д. Ведь в формулу для работы входит разность высот, а она не зависит от того, откуда начинать их отсчет. Мы могли бы, например, условиться начинать отсчет высоты с уровняВ (рис. 51).

Тогда высота этого уровня была бы равна нулю, а работа выражалась бы равенством: Импульс. Закон сохранения импульса - student2.ru ,где Импульс. Закон сохранения импульса - student2.ru –высота точки A над уровнем В.

Если тело движется вертикально вверх, то сила тяжести направлена против движения тела и ее работа отрицательна.

Если после подъема вверх тело возвращается в исходную течку, то работа на таком пути, начинающемся и кончающемся в одной и той же точке (на замкнутом пути), на пути «туда и обратно», равна нулю. Это одна из особенностей силы тяжести: работа силы тяжести на замкнутом пути равна нулю.

Импульс. Закон сохранения импульса - student2.ru Рис. 52.

Теперь выясним, какую работу совершает сила тяжести в случае, когда тело движется не по вертикали. В качестве примера рассмотрим движение тела по наклонной плоскости (рис. 52).

Допустим, что тело массой Импульс. Закон сохранения импульса - student2.ru по наклонной плоскости высотой Импульс. Закон сохранения импульса - student2.ru совершает перемещение Импульс. Закон сохранения импульса - student2.ru , по абсолютной величине равное длине наклонной плоскости. Работу силы тяжести Импульс. Закон сохранения импульса - student2.ru в этом случае надо вычислять по формуле: Импульс. Закон сохранения импульса - student2.ru .

Но из рисунка видно, что Импульс. Закон сохранения импульса - student2.ru . Поэтому: Импульс. Закон сохранения импульса - student2.ru .

Импульс. Закон сохранения импульса - student2.ru Рис. 53.

Мы получили для работы то же самое значение. Выходит, что работа силы тяжести не зависит от того, движется ли тело по вертикали или проходит более длинный путь по наклонной плоскости. При одной и той же «потере высоты» работа силы тяжести одинакова (рис. 53).

Это справедливо не только при движении по наклонной плоскости, но и по любому другому пути. В самом деле, допустим, что тело движется по какому-то произвольному пути, например, по такому, какой изображен на рисунке 54.

Импульс. Закон сохранения импульса - student2.ru Рис. 54.

Весь этот путь мы можем мысленно разбить на ряд малых участков: Импульс. Закон сохранения импульса - student2.ru и т. д. Каждый из них может считаться маленькой наклонной плоскостью, а все движение тела на пути Импульс. Закон сохранения импульса - student2.ru можно представить как движение по множеству наклонных плоскостей, переходящих одна в другую. Работа силы тяжести на каждой такой наклонной плоскости равнапроизведению Импульс. Закон сохранения импульса - student2.ru на изменение высоты тела на ней. Если изменения высот на отдельных участках равны Импульс. Закон сохранения импульса - student2.ru и т. д., то работы силы тяжести на них равны Импульс. Закон сохранения импульса - student2.ru и т. д. Тогда полную работу на всем пути можно найти, сложив все эти работы: Импульс. Закон сохранения импульса - student2.ru .

Ho, Импульс. Закон сохранения импульса - student2.ru .Следовательно, Импульс. Закон сохранения импульса - student2.ru .

Таким образом, работа силы тяжести не зависит от траектории движения тела и всегда равна произведению силы тяжести на разность высот в исходном и конечном положениях. При движении вниз работа положительна, при движении вверх –отрицательна.

Эта работа численно равна потенциальной энергии тела над поверхностью земли:

Импульс. Закон сохранения импульса - student2.ru

Почему же в технике и быту при подъеме грузов часто пользуются наклонной плоскостью? Ведь работа перемещения груза по наклонной плоскости такая же, как и при движении по вертикали! Это объясняется тем, что при равномерном движении груза по наклонной плоскости сила, которая должна быть приложена к грузу в направлении перемещения, меньше силы тяжести. Правда, груз при этом проходит больший путь. Больший путь –это плата за то, что по наклонной плоскости груз можно поднимать с помощью меньшей силы.

Связь между потенциальной энергией и силой поля

Так как выполняются соотношения: Импульс. Закон сохранения импульса - student2.ru или Импульс. Закон сохранения импульса - student2.ru то

Импульс. Закон сохранения импульса - student2.ru ,

где Импульс. Закон сохранения импульса - student2.ru – убыль потенциальной энергии в направлении перемещения Импульс. Закон сохранения импульса - student2.ru .

Последняя формула устанавливает связь между потенциальной энергией и силой поля.

Взаимодействие тел можно описать либо с помощью сил, либо с помощью потенциальной энергии. В классической механике широко используются оба способа. Однако первый способ обладает большей общностью, т.к. он применим и к диссипативным силам, для которых нельзя ввести потенциальную энергию. В квантовой механике, описывающей явления микромира, диссипативных сил нет. В уравнения квантовой механики входит лишь потенциальная энергия взаимодействующих микрочастиц.

Величины, количественно описывающие силовое поле

Количественными характеристиками силового поля являются напряжённость и потенциал поля.

а). Напряжённость поля

Силовой характеристикой поля является напряжённость поля.

Опыт показывает, что в случае гравитационных и электростатических взаимодействий сила Импульс. Закон сохранения импульса - student2.ru , действующая на частицу, помещённую в некоторую точку соответствующего поля, пропорциональна массе Импульс. Закон сохранения импульса - student2.ru (в случае гравитационного поля) или электрическому заряду Импульс. Закон сохранения импульса - student2.ru (в случае электростатического поля) частицы. В этом случае говорят о массе как «гравитационном заряде».

Напряжённостью силового поля называется векторная величина, равная отношению силы, действующей со стороны на помещенную в него материальную частицу, к величине массы (в случае гравитационного поля) илиэлектрического заряда(в случае электростатического поля) этой частицы:

Импульс. Закон сохранения импульса - student2.ru – в случае гравитационного поля;

Импульс. Закон сохранения импульса - student2.ru –в случае электростатического поля.

Направление векторов напряжённости Импульс. Закон сохранения импульса - student2.ru совпадает по направлению с вектором силы Импульс. Закон сохранения импульса - student2.ru . Величина массы Импульс. Закон сохранения импульса - student2.ru и заряда Импульс. Закон сохранения импульса - student2.ru должны быть так малы Импульс. Закон сохранения импульса - student2.ru чтобы поле не искажалось.

Пример.

Гравитационное поле (поле тяготения), один из видов поля физического, посредством которого осуществляется гравитационное взаимодействие (притяжение) тел, например, Солнца и планет Солнечной системы, планет и их спутников, Земли и находящихся на ней или вблизи нее тел.

Представим закон всемирного тяготения для двух материальных частиц (рис. 55):

Импульс. Закон сохранения импульса - student2.ru ,

где Импульс. Закон сохранения импульса - student2.ru и Импульс. Закон сохранения импульса - student2.ru – силы притяжения соответствующих частиц 1 и 2; Импульс. Закон сохранения импульса - student2.ru и Импульс. Закон сохранения импульса - student2.ru – массы частиц; Импульс. Закон сохранения импульса - student2.ru –гравитационная постоянная.

Импульс. Закон сохранения импульса - student2.ru Рис. 55.

Если обозначить массу частицы, создающей поле Импульс. Закон сохранения импульса - student2.ru , массу «пробной» частицы, вносимой в поле Импульс. Закон сохранения импульса - student2.ru а расстояние между частицами Импульс. Закон сохранения импульса - student2.ru , то силу притяжения можно записать в виде:

Импульс. Закон сохранения импульса - student2.ru

Из последней формулы следует, что напряжённость гравитационного поля, создаваемого частицей массой Импульс. Закон сохранения импульса - student2.ru , равна:

Импульс. Закон сохранения импульса - student2.ru

Единица измерения в СИ: Импульс. Закон сохранения импульса - student2.ru .То есть, размерность совпадает с размерностью ускорения. Напряжённость поля тяготения вблизи поверхности Земли равна ускорению свободного падения Импульс. Закон сохранения импульса - student2.ru (c точностью до поправки, обусловленной вращением Земли).

б). Потенциал поля

Для потенциальных силовых полей можно ввести их энергетическую характеристику – потенциал.

В широком понимании потенциал[14]– это характеристика векторных полей, к которым относятся многие силовые поля, в том числе, гравитационное и электромагнитное.

В более узком смысле:

Потенциал – это скалярная энергетическая характеристика потенциального силового поля, равная отношению потенциальной энергии взаимодействия частицы с полем к массе Импульс. Закон сохранения импульса - student2.ru этой частицы (в случае гравитационного поля), либо к величине заряда Импульс. Закон сохранения импульса - student2.ru частицы (в случае электростатического поля):

Импульс. Закон сохранения импульса - student2.ru – для гравитационного поля;

Импульс. Закон сохранения импульса - student2.ru – для электростатического поля.

Пример.

Докажем, что гравитационное поле потенциально.

Пусть частица массой Импульс. Закон сохранения импульса - student2.ru движется в гравитационном поле частицы массой Импульс. Закон сохранения импульса - student2.ru из точки 1 в точку 2 поля по произвольной траектории. Работа сил поля:

Импульс. Закон сохранения импульса - student2.ru , где Импульс. Закон сохранения импульса - student2.ru .

Тогда Импульс. Закон сохранения импульса - student2.ru ,т.е. работа сил гравитационного поля не зависит от формы траектории материальной частицы, а определяется положением её начальной и конечной точек перемещения.

Тогда потенциал гравитационного поля: Импульс. Закон сохранения импульса - student2.ru .

Принцип суперпозиции полей

При наличии нескольких Импульс. Закон сохранения импульса - student2.ru потенциальных полей их напряжённости в каждой точке пространства складываются геометрически, а их потенциалы – алгебраически:

Импульс. Закон сохранения импульса - student2.ru

Наши рекомендации