Разряд в воздушных промежутках
При увеличении напряжения между двумя электродами до определённого уровня в воздухе между электродами возникает электрический пробой. Напряжение электрического пробоя зависит от расстояния между электродами. Зачастую, для инициирования пробоя при имеющемся напряжении электроды приближают друг к другу. Во время пробоя между электродами обычно возникает искровой разряд, импульсно замыкая электрическую цепь.
Электроны в искровых разрядах ионизируют молекулы в воздушном промежутке между электродами. При достаточной мощности источника напряжения, в воздушном промежутке образуется достаточное количество плазмы для того, чтобы напряжение пробоя (или сопротивление воздушного промежутка) в этом месте значительно упало. При этом искровые разряды превращаются в дуговой разряд — плазменный шнур между электродами, являющийся плазменным тоннелем. Эта дуга является по сути проводником, и замыкает электрическую цепь между электродами, средний ток увеличивается ещё больше нагревая дугу до 5000–50000 K. При этом считается, что поджиг дуги завершён.
Взаимодействие электродов с плазмой дуги приводит к их нагреву, частичному расплавлению, испарению, окислению и другим видам коррозии.
После поджига, дуга может быть устойчива при разведении электрических контактов до некоторого расстояния.
При эксплуатации высоковольтных электроустановок, в которых неизбежно появление электрической дуги, борьба с электрической дугой осуществляется при помощи электромагнитных катушек, совмещённых с дугогасительными камерами. Среди других способов известны использование вакуумных и масляных выключателей, а также методы отвода тока на временную нагрузку, самостоятельно разрывающую электрическую цепь.
ЭЛЕКТРИЧЕСКИЕ РАЗРЯДЫ В ГАЗАХ -прохождение электрич. тока через ионизованные газы, возникновение и поддержание ионизованного состояния под действием электрич. поля.
Существует множество видов Э. р. в г. в зависимости от характера приложенного поля (пост. электрич. поле, переменное, импульсное, ВЧ, СВЧ), от давления газа, формы и расположения электродов и т. п. Ниже даны общее описание и примерная классификация разрядных явлений, рассмотрены их осн. составляющие элементы и более подробно- важнейшие виды разрядов.
Коронный разряд на ЛЭП.
Коро́нный разря́д — это характерная форма самостоятельного газового разряда, возникающего в резко неоднородных полях. Главной особенностью этого разряда является то, что ионизационные процессы электронами происходят не по всей длине промежутка, а только в небольшой его части вблизи электрода с малым радиусом кривизны (так называемого коронирующего электрода). Эта зона характеризуется значительно более высокими значениями напряженности поля по сравнению со средними значениями для всего промежутка.
Возникает при сравнительно высоких давлениях (порядка атмосферного) в сильно неоднородном электрическом поле. Подобные поля формируются у электродов с очень большой кривизной поверхности (острия, тонкие провода). Когданапряжённость поля достигает предельного значения для воздуха (около 30 кВ/см), вокруг электрода возникает свечение, имеющее вид оболочки или короны (отсюда название).
На линиях электропередачи возникновение коронного разряда нежелательно, так как вызывает значительные потери передаваемой энергии. С целью сокращения потерь на общую корону применяется расщепление проводов ЛЭП на 2, 3, 5 или 8 составляющих, в зависимости от номинального напряжения линии [для уменьшения тока в проводнике]. Составляющие располагаются в углах правильного многоугольника (или на диаметре окружности, в случае расщепления на 2 составляющих), образуемого специальной распоркой.
Иногда можно использовать так называемый «системный» способ уменьшения потерь мощности на корону. В зависимости от обстоятельств (температура, влажность и т. д.) диспетчер уменьшает напряжение в линии до определенной величины. В связи с этим задаются наименьшие допустимые сечения по короне:
110 кВ — 95 мм².
150 кВ — 120 мм².
220 кВ — 240 мм².