Урок №4 . Тема №1.Криволинейное движение
План темы:
1. Криволинейное движение.
2. Движение по окружности с постоянной по модулю скоростью.
Криволинейные движения – движения, траектории которых представляют собой не прямые, а кривые линии. По криволинейным траекториям движутся планеты, воды рек.
Криволинейное движение – это всегда движение с ускорением, даже если по модулю скорость постоянна. Криволинейное движение с постоянным ускорением всегда происходит в той плоскости, в которой находятся векторы ускорения и начальные скорости точки. В случае криволинейного движения с постоянным ускорением в плоскости xOy проекции vxи vy ее скорости на оси Ox и Oy и координаты xи y точки в любой момент времени t определяется по формулам
Частным случаем криволинейного движения – является движение по окружности. Движение по окружности, даже равномерное, всегда есть движение ускоренное: модуль скорости все время направлен по касательной к траектории, постоянно меняет направление, поэтому движение по окружности всегда происходит с центростремительным ускорением где r – радиус окружности.
Вектор ускорения при движении по окружности направлен к центру окружности и перпендикулярно вектору скорости.
При криволинейном движении ускорение можно представить как сумму нормальной и тангенциальной составляющих:
,
- нормальное (центростремительное) ускорение, направлено к центру кривизны траектории и характеризует изменение скорости по направлению:
v – мгновенное значение скорости, r – радиус кривизна траектории в данной точке.
- тангенциальное (касательное) ускорение, направлено по касательной к траектории и характеризует изменение скорости по модулю.
Полное ускорение, с которым движется материальная точка, равно:
.
Кроме центростремительного ускорения, важнейшими характеристиками равномерного движения по окружности являются период и частота обращения.
Период обращения— это время, за которое тело совершается один оборот.
Обозначается период буквой Т (с) и определяется по формуле:
где t — время обращения, п — число оборотов, совершенных за это время.
Частота обращения— это величина, численно равная числу оборотов, совершенных за единицу времени.
Обозначается частота греческой буквой (ню) и находится по формуле:
Измеряется частота в 1/с.
Период и частота — величины взаимно обратные:
Если тело, двигаясь по окружности со скоростью v, делает один оборот, то пройденный этим телом путь можно найти, умножив скорость vна время одного оборота:
l = vT. С другой стороны, этот путь равен длине окружности 2πr. Поэтому
vT = 2πr,
где w (с-1) - угловая скорость.
При неизменной частоте обращения центростремительное ускорение прямо пропорционально расстоянию от движущейся частицы до центра вращения.
Угловая скорость (w) – величина, равная отношению угла поворота радиуса, на котором находится вращающаяся точка, к промежутку времени, за который произошел этот поворот:
.
Связь между линейной и угловой скоростями:
v= wr.
Движение тела можно считать известным лишь тогда, когда известно, как движется каждая его точка. Самое простое движение твердых тел – поступательное. Поступательным называется движение твердого тела, при котором любая прямая, проведенная в этом теле, перемещается параллельно самой себе.
Практическое задание:
1.
2.Кубик массой 100г лежит без скольжения на вращающемся горизонтальном диске на расстоянии 50 см от оси вращения, при этом относительно модуль скорости кубика равен 2 м/с. Центростремительное ускорение кубика равно?
3. За 10 с точка прошла равномерно половину окружности, радиус которой 100 см. Определить линейную скорость.
Урок4. Тема 2. Лабораторная работа№1. Измерение ускорения тела при равноускоренном движении.
Д.З.§4,5.