Способы получения воды очищенной

Вода при производстве лекарственных средств широко используется в качестве компонента продукта, самого продукта, сырья, а также в качестве моющего агента (компонента моющего агента) для тары и оборудования. Ввиду особых требований к чистоте продукции, вода, используемая в производстве, должна контролироваться как на содержание примесей, так и по микробиологическим показателям.
Поскольку вода может использоваться на разных стадиях производства и в различных целях, существует несколько типов воды, отличающихся по требованиям к ее чистоте. Соответственно различаются и методы очистки и используемое оборудование.
Для разных продуктов требуется различное качество воды. Для парентеральных препаратов требуется очень чистая вода, в которой отсутствуют микроорганизмы и эндотоксины. Для препаратов местного применения и для приема через рот может применяться вода, отсутствие пирогенов в которой необязательно. Отдел контроля качества должен дать оценку каждому продукту, в производстве которого используется вода, и определить требования к ее очистке, принимая за основу характеристики наиболее чувствительного продукта.
Вода питьевая. Источником питьевой воды, как правило, является местный водопровод. Питьевая вода используется на первой стадии мойки оборудования и посуды, а также для получения других типов воды (очищенной, для инъекций). Питьевая вода может использоваться при первоначальной обработке посуды, а также на ранних стадиях производства.
Вода очищенная. Воду очищенную получают из воды питьевой путем различных операций (или их комбинаций): дистилляции, ионообмена, обратного осмоса, фильтрации и др.
Вода очищенная применяется для конечного ополаскивания посуды и оборудования, а также в производстве препаратов наружного применения. В производстве инъекционных и инфузионных препаратов вода очищенная может использоваться на первых стадиях подготовки оборудования и емкостей, например, для мойки ампул.
Вода для инъекций. Воду для инъекций получают из воды очищенной путем дистилляции, обратного осмоса или ионообмена.
Вода для инъекций применяется для конечного ополаскивания посуды и оборудования перед стерилизацией и при приготовлении лекарственных форм в качестве растворителя инъекционных и инфузионных препаратов.
3. Загрязнения питьевой воды
Механические и коллоидные частицы. 1,0 мкм и могут быть как органическими, так и неорганическими. Коллоиды могут повреждать мембраны установок обратного осмоса и увеличивать удельную электрическую проводимость воды.
Содержание песка, ила, глины и других механических частиц вызывает помутнение воды. Механические частицы могут забивать клапаны, фильтры тонкой очистки и повреждать мембраны обратного осмоса. Коллоидные частицы имеют размер 0,01 - коллоидных частиц может быть определено весовым методом.
Растворенные неорганические вещества. Силикаты, хлориды, бикарбонаты, сульфаты, фосфаты и ионы металлов представляют собой анионы (отрицательно заряженные ионы) и катионы (положительно заряженные ионы). Их остаточная суммарная концентрация в очищенной воде оценивается по удельной электрической проводимости (или сопротивлению) воды.
Растворенные неорганические газы. В очищенной воде чаще всего встречается растворенный в воде углекислый газ в виде слабой угольной кислоты и кислород. Содержание диоксида углерода в очищенной воде оценивается по цветной реакции с дифениламином. Кислород может вызывать коррозию металлических поверхностей. Для его определения могут быть использованы элементные анализаторы. Большая часть растворенных газов удаляется ионообменной смолой.
Растворенные органические вещества. Органические вещества - это продукты разложения остатков растений и животных, а также продукты жизнедеятельности человека. Это могут быть белки, спирты, хлорамин и остатки пестицидов, гербицидов и детергентов. Для определения общего углерода может быть использован персульфатный анализатор.
Микроорганизмы. В воде могут встречаться бактерии, грибы, простейшие водоросли и вирусы. Количество микроорганизмов оценивается с помощью культивирования проб и измеряется количеством колониеобразующих единиц на миллилитр воды. Для обеззараживания водопроводной воды обычно используют хлорирование. Микробиологическую чистоту питьевой воды оценивают по МУК 4.2.671-97. Микробиологическую чистоту воды очищенной и воды для инъекций оценивают по ГФ XI, вып.2, с. 193.
Бактериальные эндотоксины. Бактериальные эндотоксины представляют собой липополисахариды клеточных стенок и являются одним из факторов, обуславливающих пирогенность воды. Пирогены вызывают лихорадку при введении млекопитающему.
Пирогенность определяют по ГФ XI, вып.2, с. 183 введением пробы кролику и наблюдением за температурой его тела. Эндотоксины определяют с помощью LAL.-теста по ВФС 42-2960-97 «Определение содержания бактериальных эндотоксинов».
4. Процессы, применяемые при очистке воды
Подогрев и термостатирование. Поддержание температуры воды в заданных пределах особенно важно при наличии в схеме стадии обратного осмоса. При низких температурах пропускная способность мембраны существенно снижается. Вода высокой температуры может растворять смолы умягчителей.
Оборудованием этой стадии могут быть теплообменники с применением одного из видов энергоносителей (пар, газ, электричество, вода). Автоматическая схема должна обеспечивать поддержание температуры в заданных пределах. Поверхность, соприкасающаяся с водой не должна ухудшать ее качество. Температура воды измеряется температурными датчиками.
Грубая фильтрация. Грубая фильтрация позволяет удалять из воды частицы размером более SO-100 мкм.
В качестве оборудования для грубой фильтрации используются фильтры с песчаной набивкой. Выбор сорта песка зависит от результатов анализа воды с учетом сезонных изменений. Фильтр периодически промывается. Исправность фильтра контролируется разностью давления воды до и после фильтра.
Умягчение. Умягчение позволяет понизить жесткость воды за счет удаления ионов кальция и магния. Умягчение позволяет значительно снизить содержание ионов перед подачей воды для очистки на ионообменники и мембраны обратного осмоса.
В качестве оборудования на этой стадии могут служить автоматические умягчители, работающие на принципе замены ионов кальция и магния ионами натрия. Умягчители периодически регенерируются раствором хлорида натрия. Исправность работы умягчителя можно контролировать периодическим измерением жесткости воды на входе и на выходе.
Фильтрация через угольный фильтр. Фильтрация через угольный фильтр позволяет снизить концентрацию органических веществ и хлора.
Используются стандартные патронные фильтры с активированным углем. Исправность фильтра контролируется разностью давления воды до и после фильтра.
Обратный осмос. На стадии обратного осмоса вода очищается от органических соединений и солей. Удаление примесей происходит за счет пропускания воды через полупроницаемую мембрану при давлении, превышающем осмотическое. Для увеличения эффективности процесса используется тангенциальная подача воды к поверхности мембраны при рециркуляции. Оборудование представляет собой системы мембран. Мембраны имеют размеры пор 0,0005 - 0,001 мкм.
Контроль систем обратного осмоса осуществляется измерением удельной электрической проводимости воды на выходе из системы.
Ультрафиолетовое облучение. Фотохимическое окисление воды ультрафиолетовыми лучами с длинами волн 185 и 245 нм может устранять следы органических соединений и убивать микроорганизмы в воде. Ультрафиолетовое облучение с длиной волны 254 нм может быть использовано также и для предотвращения размножения бактерий в резервуарах для хранения воды.
Оборудование представляет собой лампы ультрафиолетового свечения. Правильность работы ламп контролируется по их излучающей способности.
Ультрафильтрация. Ультрафильтрация предназначена для удаления из воды пирогенов и других растворенных органических веществ, молекулярная масса которых превышает 10 000.
Оборудование представляет собой системы мембран. Ультрафильтрационные мембраны имеют диаметр пор 0,001 - 0,05 мкм. Вещества, задерживаемые ультрафильтрационной мембраной, располагаются в области молекулярных масс от 10 000 до 1 000 000. Вода проникает через мембрану, в то время как загрязнения задерживаются.
Правильность работы системы контролируется по разности давления воды до и после мембран.
Дистилляция. В процессе дистилляции вода переводится в пар и обратно в жидкую фазу, при этом происходит отделение примесей. Дистилляция является наиболее эффективным методом очистки воды для разных целей. В качестве оборудования на этой стадии используются одно- или многокорпусные дистилляторы. Наиболее эффективны многокорпусные установки. В них вода последовательно перегоняется через несколько колонн (обычно от 3-х до 8-ми). Исходная вода проходит в противотоке с конденсатом и поэтапно нагревается на каждой ступени. Одновременно с этим охлаждается и конденсируется дистиллят, что приводит к значительной экономии энергии.
Дистилляционная установка должна согласовываться с резервуаром для хранения воды, т.е. включаться и выключаться в зависимости от уровня в резервуаре. Должен осуществляться непрерывный автоматический контроль качества дистиллята по удельной электрической проводимости. При неудовлетворительном качестве дистиллят должен быть возвращен на повторную обработку. В случае устойчивого неудовлетворительного качества дистиллята необходимо остановить систему и провести санацию. Возобновление наполнения резервуара возможно только при уверенности в удовлетворительном качестве дистиллята.
Микрофильтрация. Микрофильтрация позволяет удалить из воды мелкие частицы и микроорганизмы. Фильтр с диаметром отверстий 2-3 мкм используется перед мембранами обратного осмоса и ультрафильтрации. Фильтр с диаметром отверстий 0,22 мкм используется в конце системы получения воды для инъекций и в системах распределения с целью предотвращения механической и микробиологической контаминации.
4.10. Деионизация. Деионизация позволяет очистить воду от ионов - заряженных частиц. Оборудование для деионизации представляет собой колонки с ионообменной смолой. Различаются деионизаторы раздельного действия (катионо - анионообменники) и смешанного действия.
Контроль правильности работы деионизаторов осуществляется измерением удельной электрической проводимости воды на выходе из системы.
5. Схемы очистки воды
Для получения воды очищенной и воды для инъекций применяются последовательные многоступенчатые схемы. При выборе конкретной схемы необходимо учитывать результаты анализа исходной воды и имеющееся в наличии оборудование. Следует отметить, что в зависимости от конкретных условий, можно применять процессы, не упомянутые в этой главе. Главное, чтобы в результате полученная вода соответствовала требованиям действующих нормативных документов.

Наши рекомендации