Предельное статическое напряжение сдвига

Предельное статическое напряжение сдвига (СНС) обозначается буквой «q» и измеряется в Па.

Физический смысл: условная характеристика прочности тиксотропной структуры, возникающей в промывочной жидкости после нахождения в покое в течение одной (СНС1) или десяти (СНС10) минут. Первая величина характеризует удерживающую способность промывочной жидкости. При выборе параметров промывочной жидкости принимается меньшее значение величины СНС1, при котором обеспечивается выполнение указанной функции. При еще меньших величинах частицы породы не будут удерживаться во взвешенном состоянии.

В связи с тиксотропностью промывочной жидкости прочность структуры при длительном нахождении в покое может достичь таких значений, при которых в момент восстановления циркуляции сопротивление структуры вызовет очень большое увеличение давления промывочной жидкости, что способствует разрыву пласта. Поэтому кроме величины СНС1 измеряют и СНС10, причем тиксотропность характеризуют частным от деления второй величины на первую.

В промысловых лабораториях распространены различные ротационные приборы для определения СНС. Общим принципом действия этих приборов является уравновешивание сопротивлений, возникающих при взаимном перемещении исследуемой жидкости и находящегося в ней подвешенного на проволоке цилиндра, и упругих сопротивлений этой проволоки закручиванию. В одних ротационных приборах внутренний цилиндр является неподвижным, а заполненный раствором внешний цилиндр-стакан вращается, в приборах другого типа вращается внутренний цилиндр, а исследуемая жидкость во внешнем цилиндре-стакане находится в неподвижном состоянии. Если, например, вращается внешний стакан, то сила взаимодействия между находящимся в стакане структурированным раствором и поверхностью внутреннего цилиндра заставит последний также вращаться, а проволоку, на которой цилиндр повешен, - закручиваться. Вращение внутреннего цилиндра будет происходить до тех пор, пока возрастающее сопротивление закручиваемой проволоки не сравняется с сопротивлениями сдвигу, возникающими при взаимном перемещении цилиндра и жидкости.

Предельное статическое напряжение сдвига - student2.ru Сила сопротивления раствора вращению в нем внутреннего цилиндра f1 равна произведению боковой поверхности цилиндра на статическое напряжение сдвига.

В отечественной практике применяются ротационные приборы с неподвижным внутренним цилиндром и вращающимся внешним цилиндром-стаканом. Получил распространение прибор СНС-2 (рис. 6.12.) завода КИП.

6.8.10. ПРИБОРНО-МЕТОДИЧЕСКИЙ КОМПЛЕКС ДЛЯ ПРОЕКТИРОВАНИЯ ПРОМЫВОЧНЫХ ЖИДКОСТЕЙ ПРИМЕНИТЕЛЬНО К СЛОЖНЫМ ГЕОЛОГО-ТЕХНИЧЕСКИМ УСЛОВИЯМ БУРЕНИЯ

(П.С.Чубик, В.И.Брылин, Е.Б.Годунов)

Для успешного бурения в сложных геолого-технических условиях, характеризующихся нарушениями устойчивости стенок скважин, поглощениями промывочной жидкости, прихватами бурильной колонны; большими зенитными, вплоть до 90 градусов, углами скважины и т.п., требуется глубокая и всесторонняя оценка качества промывочной жидкости, которая особенно остро необходима на стадии ее проектирования, так как качество должно быть заложено в промывочной жидкости, а не доказываться контролем.

Для решения этой задачи в Томском политехническом университете разработан приборно-методический комплекс, включающий в себя следующее:

- универсальный прибор для оценки ингибирующей и консолидирующей способности промывочных жидкостей (ПОИКС);

- универсальный пресс для формирования модельных образцов глинистых и потенциально неустойчивых пород (пресс);

- прибор для оценки закупоривающей способности промывочных жидкостей (ПОЗС);

- прибор для определения смазочной способности промывочных жидкостей (трибометр).

ПОИКС (рис. 6.13.) используется с целью получения количественных показателей, характеризующих влияние промывочных жидкостей на разупрочнение и диспергирование глинистых и глиносодержащих пород, а также на упрочнение (консолидацию) потенциально неустойчивых пород, и выбора на этой основе оптимальных составов промывочных жидкостей, обеспечивающих следующие возможности:

- предупреждение деформационных процессов в околоствольном пространстве скважин (кавернообразование, сужение ствола и т.п.), представленном легкогидратирующимися, набухающими и размокающими глинами и глинистыми сланцами;

- снижение интенсивности обогащения промывочной жидкости шламом при бурении в легкодиспергирующихся глинистых отложениях и, соответственно, снижение интенсивности изменения ее функциональных свойств, регенерация которых требует разбавления промывочной жидкости водой, дополнительной обработки ее химическими реагентами, и неизбежно связана с увеличением не только затрат на бурение скважин, но и загрязнения окружающей среды;

Предельное статическое напряжение сдвига - student2.ru - повышение устойчивости стенок скважин при бурении в генетически слабосвязанных и тектонически разрушенных горных породах;

- качественное вскрытие продуктивных пластов в песчано-глинистых коллекторах.

Принцип работы ПОИКС заключается в следующем: к модельному образцу породы, помещаемому в камеру, прилагают постоянную осевую нагрузку, не вызывающую его разрушения в воздушной среде; заполняют камеру испытуемой жидкостью и фиксируют время от момента подачи жидкости до момента разрушения в ней образца. При оценке ингибирующей способности испытаниям подвергают фильтрат или фугат промывочной жидкости и в качестве эталона - дистиллированную воду, а при оценке консолидирующей способности - непосредственно саму промывочную жидкость. В первом случае материалом для изготовления модельных образцов служит глина, а во втором - частицы потенциально неустойчивой породы, сконсолидированные исследуемой промывочной жидкостью, т.е. смешанные с нею в определенном соотношении. В том и другом случаях испытания проводятся на модельных образцах, изготовленных из частиц одинакового фракционного состава одной и той же породы, при одинаковых их геометрических размерах, исходной влажности, нагрузке на образцы и др.

Ингибирующую способность (Ис) промывочной жидкости характеризуют следующим показателем

Ис = tф / tв ,

где tф, tв - время воздействия на модельные образцы до их разрушения соответственно фильтрата (фугата) испытуемой промывочной жидкости и дистиллированной воды, с.

Показателем консолидирующей способности (Кс) служит продолжительность нахождения в промывочной жидкости в устойчивом состоянии сконсолидированного ею модельного образца породы.

От аналогов ПОИКС отличается универсальностью, автоматической регистрацией измеряемой величины, а также более высокой достоверностью и точностью оценки рассматриваемых показателей свойств промывочных жидкостей (Ис, Кс), способы определения которых защищены патентами № 2073227 и № 2073842 Российской Федерации.

Предельное статическое напряжение сдвига - student2.ru ПОЗС (рис. 3.14.) предназначен для выбора наиболее эффективного закупоривающего материала (наполнителя) и минимально необходимой его концентрации в промывочной жидкости с целью ликвидации ее потерь при бурении скважин в зонах поглощений и реализации управляемой приствольной кольматации продуктивных пластов без загрязнения их фильтратом промывочной жидкости.

Принцип работы ПОЗС заключается в следующем. Камеру заполняют промывочной жидкостью, содержащей испытуемый наполнитель, и при постоянном напоре продавливают ее через модельный образец. Измеряют объем промывочной жидкости (V, см3), прошедшей через образец до момента его полного закупоривания. Испытания проводят не менее трех раз при различной концентрации испытуемого наполнителя в одной и той же исходной промывочной жидкости. По результатам испытаний находят зависимость С = f (V), наиболее адекватно описывающую связь между концентрацией наполнителя С и объемом бурового раствора V, прошедшего через модельный образец до момента его полного закупоривания. Затем, приняв в найденной зависимости V = 0, определяют минимально необходимую концентрацию наполнителя (Сmin) для полного закупоривания модельного образца без ухода из камеры (без поглощения) промывочной жидкости. Полученное значение Сmin является интегральным показателем закупоривающей способности системы “промывочная жидкость + наполнитель” для конкретной приемистости или проницаемости модельного образца, имитирующего поглощающий или продуктивный пласт.

Для моделирования поглощения в трещиноватых породах используют искусственные щели различной ширины, а гранулярные пласты различной проницаемости моделируют с помощью дроби, стеклянных и стальных шариков различного диаметра, частиц песка определенной фракции и т.п.

По сравнению с прибором аналогичного назначения Американского нефтяного института данный прибор обеспечивает однозначный выбор наиболее эффективного закупоривающего материала (наполнителя) для ликвидации поглощений промывочной жидкости по минимально необходимой для этого концентрации наполнителя, способ определения которой защищен патентом № 2062452 Российской Федерации / 4 /.

Трибометр(рис 6.15.) предназначен для оценки триботехнических свойств промывочных жидкостей, характеризующих их способность снижать трение между контактирующими в скважине поверхностями и их износ.

Предельное статическое напряжение сдвига - student2.ru В общем случае при бурении контактирующими в скважине поверхностями являются следующие: наружная поверхность бурильных труб и их соединений - стенка ствола скважины (внутренняя стенка обсадных труб), вооружение породоразрушающего инструмента - забой скважины, внутренняя поверхность керноприемной трубы - керн.

Основным показателем триботехнических свойств (смазочной способности) промывочных жидкостей служит коэффициент триады трения “бурильные трубы - исследуемая промывочная жидкость - стенка ствола скважины”.

Снижение коэффициента трения позволяет:

- уменьшить крутящий момент при вращении колонны бурильных труб и снизить сопротивления при продольном их перемещении в скважине (при СПО), что в целом снижает энергоемкость процесса бурения;

- снизить вероятность возникновения дифференциальных прихватов (затраты на их ликвидацию);

- повысить ресурс работы бурильных труб и их соединений, породоразрушающего инструмента, гидравлических забойных двигателей, гидравлических частей буровых насосов;

- увеличить выход керна в результате предупреждения его самоподклинок.

Отличительными особенностями данного трибометра, защищенными патентом № 2044301 Российской Федерации, являются полная имитация работы бурового снаряда в скважине, использование для измерения силы трения простого и высокоточного измерительного устройства, предельно малые габариты.

Все рассмотренные выше приборы и методики прошли достаточно широкую апробацию, результаты которой убедительно свидетельствуют о высокой результативности их использования в процессе оптимизации составов промывочных жидкостей для бурения скважин в сложных геолого-технических условиях.

6.8.11. ПРОЧИЕ СВОИСТВА ПРОМЫВОЧНЫХ ЖИДКОСТЕИ

Поверхностное натяжение промывочной жидкости необходимо определять при использовании поверхностно-активных веществ для понижения твердости горных пород в процессе бурения, а также в качестве компонентов промывочной жидкости, например эмульсионных растворов.

Наиболее простой метод определения поверхностного натяжения сталагмометрический (метод отрывающейся капли).

Сталагмометр представляет собой стеклянную трубку на штативе с капиллярным отверстием в нижней части, торец которой отшлифован перпендикулярно к ее оси. При медленном истечении жидкости из сталагмометра на его конце образуется капля. Непрерывно поступающая из сталагмометра жидкость увеличивает размер капли до тех пор, пока ее вес не превысит величину силы поверхностного натяжения жидкости, тогда капля отрывается. Чем меньше поверхностное натяжение жидкости, тем больше капель получится при истечении одного и того же объема жидкости. По числу капель судят о концентрации ПАВ.

Измерения проводятся либо на границе жидкость-жидкость (истечение испытываемой жидкости происходит в керосин), либо на границе жидкость-воздух.

Последний метод недостаточно точен, но более прост и поэтому применяется для оперативного контроля содержания ПАВ.

Поверхностное натяжение жидкости σ определяется с использованием поверхностного натяжения стандартной жидкости σв качестве которой чаще всего принимается вода.

σ = σв (nвγв/n γ),

где nв и n - число капель соответственно исследуемой и стандартной жидкости; γв и γ удельные веса исследуемой и стандартной жидкости.

Обычно по результатам предварительных исследований строится график зависимости о от концентрации ПАВ в растворе. Тогда измерение концентрации ПАВ в промывочной жидкости сводится к определению количества капель и считыванию концентрации с графика.

Состав фильтрата и воды необходимо знать для оценки целесообразности применения того или иного способа регулирования свойств промывочной жидкости. Это связано с определением химического состава промывочной жидкости, главным образом концентрации минеральных солей. Чаще всего определяют концентрацию хлористых солей и солей, характеризующих жесткость воды. Иногда приходится оценивать химический состав дисперсионной среды после введения веществ с целью изменения тех или иных свойств жидкости. Обычно исследованию подвергается фильтрат, полученный при измерении показателя фильтрации.

Методы химического анализа водных растворов излагаются в специальных пособиях.

При поглощениях важно знать закупоривающие свойства промывочных жидкостей, которые придают введением инертных наполнителей. Иногда приходится определять и другие свойства (теплоемкость, состав дисперсной фазы, липкость фильтрационной корки и др.), имеющие подчиненное значение в оценке приемлемости растворов для тех или иных условий бурения.

6.9. СПОСОБЫ ПРИГОТОВЛЕНИЯ ДИСПЕРСНЫХ СИСТЕМ

Существуют два принципиально противоположных способа приготовления дисперсных систем.

Первый диспергирование основан на измельчении крупных тел до получения систем, содержащих частицы требуемых размеров.

Второй конденсация основан на увеличении размера частиц от молекулярных величин до образования новой дисперсной фазы.

В подавляющем большинстве случаев в технике промывочных жидкостей для приготовления дисперсных систем используют первый способ диспергирование. Он заключается в сочетании сильного перемешивания, при котором измельчаемые тела соударяются друг с другом, с ударами о твердую поверхность, например лопасти мешалок или специальные отражательные поверхности. При диспергировании нерастворимых тел в отличие от диспергирования, называемого растворением, не достигается молекулярной степени измельчения. Это объясняется двумя причинами. Усилие, разрушающее тело, определяется моментом силы произведением величины силы на ее плечо. При разрушении, диспергировании частицы, плечо равно размеру частицы. Чем мельче она, тем меньше и плечо. Поэтому величина разрушающей силы должна быстро возрастать по мере диспергирования. Но величина силы в измельчающих устройствах может увеличиваться только до определенных пределов, поэтому и измельчение должно быть ограниченным. Вторая причина заключается в том, что с ростом удельной поверхности усиливается влияние свободной межфазной поверхностной энергии. Силы притяжения между частицами быстро увеличиваются по мере измельчения. Вследствие этого усиливается притяжение частиц друг к другу: частицы сливаются вместе и укрупняются. Этот процесс укрупнения вызывает увеличение размера частиц дисперсной фазы.

Одновременно с диспергированием частиц начинается и их рост конденсация частиц. Чем частицы меньше, тем интенсивнее конденсация. Диспергирование прекращается, когда рост степени дисперсности, вызываемый разрушением частиц, сравняется с увеличением их, вызываемым конденсацией.

Процесс диспергирования можно ускорить, вводя в систему вещества, способные адсорбироваться на поверхности частиц, (стабилизаторы) и загораживать (экранировать) частицы, препятствуя конденсации. Этот процесс называют пептизацией. В процессе диспергирования используют и адсорбционное понижение прочности (эффект Ребиндера).

Наконец, увеличение концентрации частиц усиливает прочность дисперсной системы; при этом возрастают и силы, действующие на частицы. Поэтому часто наибольшего диспергирования достигают увеличением концентрации частиц дисперсной фазы.

6.10. ОБОРУДОВАНИЕ ДЛЯ ПРИГОТОВЛЕНИЯ И ОЧИСТКИ БУРОВЫХ РАСТВОРОВ

Приготовление, утяжеление и обработка буровых растворов, а также их очистка от выбуренной породы — важный процесс при бурении скважины. От качества бурового раствора в значительной мере зависит успех проводки скважины.

Приготовление буровых растворов может осуществляться в механических мешалках и гидравлических смесителях.

В настоящее время в отечественной практике для приготовления буровых растворов широко применяются порошкообразные материалы. Для приготовления буровых растворов из этих материалов используют следующее оборудование: блок приготовления раствора (БПР), выносной гидроэжекторный смеситель, гидравлический диспергатор, емкости ЦС, механические и гидравлические перемешиватели, поршневой насос.

При обработке глинистых растворов химическими реагентами, особенно содержащими щелочи и кислоты, рабочие должны работать в резиновых перчатках, очках, фартуках и сапогах, чтобы брызги щелочи и кислоты не повредили лицо, руки и одежду.

В механических глиномешалках можно приготовить растворы из сырых глин, глинобрикетов и глинопорошков.

Более эффективны, чем глиномешалки, фрезерно-струйные мельницы ФСМ-3 и ФСМ-7.

Фрезерно-струйная мельница может быть использована не только для приготовления растворов, но и для утяжеления бурового раствора, а также для добавки в него глины и глино-порошка. В этом случае в ФСМ вместо воды подается буровой раствор. Техническая характеристика ФСМ приведена ниже.

Очистка промывочной жидкости от обломков выбуренной породы (шлама). Буровой раствор, выходящий на поверхность из скважины, может быть вновь использован, но для этого он должен быть очищен от обломков выбуренной породы (шлама).

Поступающие в буровой раствор частицы выбуренной породы оказывают вредное влияние на его основные технологические свойства. Кроме того, наличие в растворе абразивных частиц существенно снижает показатели работы долот, гидравлических забойных двигателей, буровых насосов и другого оборудования. В связи с этим очистке буровых растворов должно уделяться особое внимание.

Предельное статическое напряжение сдвига - student2.ru Для очистки бурового раствора от шлама используется комплекс различных механических устройств: вибрационные сита (рис. 6.16.), гидроциклонные шламоотделители (рис. 6.17.), сепараторы, центрифуги. В составе циркуляционной системы все эти механические устройства должны устанавливаться в строгой последовательности. При этом схема прохождения бурового раствора должна соответствовать следующей технологической цепочке: скважина — газовый сепаратор — блок грубой очистки от шлама (вибросита) дегазатор — блок тонкой очистки от шлама (песко- и илоотделители, сепаратор) — блок регулирования содержания и состава твердой фазы (центрифуга, гидроциклонный глиноотделитель) — буровые насосы — скважина.

Предельное статическое напряжение сдвига - student2.ru При отсутствии газа в буровом растворе исключают ступени дегазации; при использовании неутяжеленного раствора, как правило, не применяют сепараторы, глиноотделители и центрифуги; при очистке утяжеленного бурового раствора обычно исключают гидроциклонные шламоотделители (песко- и илоотделители). Таким образом, выбор оборудования и технологии очистки бурового раствора от шлама должен основываться на конкретных условиях бурения.

Для очистки буровых растворов, как обязательная, принята трехступенчатая система.

Технология очистки не утяжеленного бурового раствора по этой системе представляет собой ряд последовательных операций, включающих грубую очистку на вибросите и тонкую очистку — пескоотделение и илоотделение — на гидроциклонах шламоотделителях. Буровой раствор после выхода из скважины подвергается на первой ступени грубой очистке на вибросите и собирается в емкости. Из емкости центробежным насосом раствор подается в батарею гидроциклонов пескоотделителя, где из раствора удаляются частицы песка. Очищенный от песка раствор поступает через верхний слив в емкость, а песок сбрасывается в шламовый амбар. Из емкости центробежным насосом раствор подается для окончательной очистки в батарею гидроциклонов илоотделителя. После отделения частиц ила очищенный раствор направляется в приемную емкость бурового насоса, а ил сбрасывается в шламовый амбар.

Дегазация промывочных жидкостей. Газирование бурового раствора препятствует ведению нормального процесса бурения. Во-первых, вследствие снижения эффективной гидравлической мощности уменьшается механическая скорость проходки, во-вторых, возникают осыпи и проявления пластовой жидкости и газа в результате снижения эффективной плотности бурового раствора, т. е. гидравлического давления на пласты, в-третьих, возникает опасность взрыва или отравления ядовитыми пластовыми газами (например сероводородом). Пузырьки газа препятствуют удалению шлама из раствора, поэтому оборудование для очистки от шлама работает неэффективно.

Газ в буровом растворе может находиться в свободном, жидком и растворенном состояниях. Свободный газ легко удаляется из бурового раствора в поверхностной циркуляционной системе путем перемешивания в желобах, на виброситах, в емкостях. При устойчивом газировании свободный газ из бурового раствора удаляют с помощью газового сепаратора.

Очищенный от свободного газа буровой раствор обычно поступает на вибросито. Однако при наличии в буровом растворе жидкости токсичного газа, например сероводорода, поток из сепаратора по закрытому трубопроводу сразу подается на дегазатор для очистки от газа. Только после окончательной дегазации буровой раствор очищают от шлама. Наибольшее распространение в отечественной практике получили вакуумные дегазаторы. Они представляют собой двухкамерную герметичную емкость, вакуум в которой создается насосом. Камеры включаются в работу поочередно при помощи золотникового устройства. Производительность дегазатора при использовании глинистого раствора достигает 45 л/с; остаточное газосодержание в буровом растворе после обработки не превышает 2%.

Регенерация утяжелителей. Утяжелители - дорогие и дефицитные материалы, поэтому их экономное и повторное использование - весьма важная задача работников бурения.

Существуют следующие способы повторного использования утяжеленного раствора.

1. При близком расположении бурящихся скважин утяжеленный раствор перекачивают из одной буровой в другую по трубопроводу.

2. При отсутствии трубопровода утяжеленный раствор из буровой в буровую перевозится в автоцистернах.

3. Утяжелитель извлекают из раствора при помощи специальных устройств. Регенерацию утяжелителей из отработанных растворов производят осаждением в желобах, в гидроциклонных установках или в специальных регенерационных установках.

Наши рекомендации