Потенциометрические датчики
Измерительные преобразователи, выполненные в виде реостата, подвижный контакт которого перемещается под воздействием входной измеряемой величины, называютсяреостатными измерительными преобразователями. Чаще всего реостатные ИП включаются в измерительную цепь по схеме потенциометра, поэтому в ряде источников используется термин «потенциометрические преобразователи».
Выходной величиной ИП является электрическое сопротивление, функционально связанное с положением подвижного контакта. Реостатные преобразователи служат для преобразования угловых или линейных перемещений в соответствующее изменение сопротивления, тока или напряжения. Так как в перемещение могут быть преобразованы многие неэлектрические величины (давление, расход, уровень и др.), то реостатные преобразователи очень часто используют в качестве промежуточных преобразователей неэлектрических величин в электрические.
В зависимости от материала чувствительного элемента реостатные преобразователи разделяются на проволочные и непроволочные.
В устройствах автоматики широко применяют проволочные реостатные преобразователи, которые отличаются высокой точностью и стабильностью функции преобразования, имеют малое переходное сопротивление, низкий уровень собственных шумов, малый температурный коэффициент сопротивления (ТКС). К их недостаткам относятся низкая разрешающая способность, сравнительно невысокое сопротивление (до десятков кОм), ограниченная возможность применения на переменном токе, обусловленная остаточными индуктивностью и емкостью намотки.
В зависимости от конструктивного исполнения различают реостатные преобразователи с поступательным и вращательным перемещением подвижного контакта. Последние, кроме того, делятся на одно- и многооборотные.
Конструктивно реостатные преобразователи (рис. 5.2, а, б) состоят из каркаса 1, обмотки из изолированного провода 2 и токосъемного контакта 3 в виде щетки или движка, скользящего по виткам провода, очищенного от изоляции.
Каркас выполняется из изоляционного материала и может иметь форму стержня, кольца, изогнутой пластины. Материал каркаса должен сохранять свои размеры в широком температурном диапазоне, условиях повышенной влажности и химической загрязненности атмосферы. Кроме того, каркасы должны обладать высокой теплопроводностью, что позволяет увеличивать рассеиваемую в преобразователе мощность. В качестве изоляционного материала используют гетинакс, текстолит, керамику или металл, покрытый непроводящим слоем оксида.
Обмотку выполняют изолированным проводом виток к витку или с заданным шагом Lш. Материал обмотки должен отвечать следующим требованиям: высокое удельное электрическое сопротивление, высокая коррозионная стойкость, стабильность характеристик во времени, малый ТКС, большая прочность на разрыв и истирание. В качестве обмоточного провода применяют константан и манганин, а при работе в условиях повышенных температур - железо- и никельхромовые сплавы. В особо ответственных или специфических условиях работы применяют сплавы из благородных металлов: платины с иридием, платины с палладием и др. Например, добавка иридия к платине увеличивает ее твердость, износоустойчивость, химическую стойкость, коррозионную стойкость. Диаметр провода зависит от точности и сопротивления преобразователя: 0,01...0,10 мм для датчиков высокого класса; 0,1...0,4 мм - для датчиков низкого класса. Обмоточный провод покрывают слоем эмали или слоем оксидов.
Тензометрические датчики
Тензометрический датчик (тензодатчик; от лат. tensus — напряжённый) — датчик, преобразующий величину деформации в удобный для измерения сигнал (обычно электрический), основной компонент тензометра (прибора для измерения деформаций) Существует множество способов измерения деформаций: тензорезистивный, оптико-поляризационный, пьезорезистивный, волоконно-оптический, или простым считыванием показаний с линейки механического тензодатчика. Среди электронных тензодатчиков, наибольшее распространение получили тензорезистивные датчики.
Тензорезистивный датчик обычно представляет собой специальную упругую конструкцию с закреплённым на ней тензорезистором и другими вспомогательными деталями. После калибровки, по изменению сопротивления тензорезистора можно вычислить степень деформации, которая будет пропорциональна силе, приложенной к конструкции.
Существуют разные типы датчиков:
датчики силы (измеряет усилия и нагрузки)
датчики давления (измерение давления в различных средах)
акселерометры (датчик ускорения)
датчики перемещения
датчики крутящего момента
Наиболее типичным применением тензодатчиков являются весы. В зависимости от конструкции грузоприёмной платформы, применяются тензодатчики различного типа:
консольные;
s-образные;
«шайба»;
«бочка»;
Конструкция резистивного тензодатчика представляет собой упругий элемент, на котором зафиксирован тензорезистор. Под действием силы (веса груза) происходит деформация упругого элемента вместе с тензорезистором. В результате изменения сопротивления тензорезистора, можно судить о силе воздействия на датчик, а следовательно, и о весе груза.
Принцип измерения веса при помощи тензодатчиков основан на уравновешивании массы взвешиваемого груза с упругой механической силой тензодатчиков и последующего преобразования этой силы в электрический сигнал для последующей обработки.
Для характеристики защиты тензодатчика от воды и пыли используется
Индуктивные датчики
Индуктивный датчик — бесконтактный датчик, предназначенный для контроля положения объектов из металла (к другим материалам не чувствителен).
Индуктивные датчики широко используются для решения задач АСУ ТП. Выполняются с нормально разомкнутым или нормально замкнутым контактом.
Принцип действия основан на изменении параметров магнитного поля, создаваемого катушкой индуктивности внутри датчика.
Принцип действия основан на изменении амплитуды колебаний генератора при внесении в активную зону датчика металлического, магнитного, ферро-магнитного или аморфного материала определенных размеров. При подаче питания на конечный выключатель в области его чувствительной поверхности образуется изменяющееся магнитное поле, наводящее во внесенном в зону материале вихревые токи, которые приводят к изменению амплитуды колебаний генератора. В результате вырабатывается аналоговый выходной сигнал, величина которого изменяется от расстояния между датчиком и контролируемым предметом. Триггер Шмитта преобразует аналоговый сигнал в логический.
Индуктивные бесконтактные выключатели могут состоять из следующих основных узлов:
1.Генератор создает электромагнитное поле взаимодействия с объектом.
2. Триггер Шмитта обеспечивает гистерезис при переключении.
3. Усилитель увеличивает амплитуду сигнала до необходимого значения.
4. Светодиодный индикатор показывает состояние выключателя, обеспечивает контроль работоспособности, оперативность настройки.
5. Компаунд обеспечивает необходимую степень защиты от проникновения твердых частиц и воды.
6. Корпус обеспечивает монтаж датчика, защищает от механических воздействий. Выполняется из латуни или полиамида, комплектуется метизными изделиями
Емкостные датчики
Ёмкостный датчик — преобразователь параметрического типа, в котором изменение измеряемой величины преобразуется в изменение ёмкости конденсатора.
Специальная схема преобразует изменение ёмкости в пороговый сигнал датчика (например сухой контакт). В простейших датчиках это обычно мультивибратор, преобразователь «частота (или скважность)-напряжение» и компаратор. Иногда, если изменение ёмкости в ответ на воздействие невелико, приходится ставить схемы на микроконтроллерах, которые занимаются автоподстройкой чувствительности и нуля датчика.
Ёмкостные датчики получили широкое распространение там, где необходимо контролировать появление слабопроводящих жидкостей, например воды. Это датчики уровня жидкости, датчики дождя в автомобилях, датчики в сенсорных кнопках на бытовой технике (в живых тканях много воды) и т. п.
Существуют также ёмкостные датчики уровня жидкости, широко используемые для измерения количества топлива на летательных аппаратах. Обычно датчик представляет собой пару вставленных друг в друга металлических цилиндров (иногда сложной формы, чтобы обеспечить линейность характеристики датчика при сложной форме бака), погруженных в топливо. Принцип действия датчиков основан на том, что ёмкость прямо пропорциональна диэлектрической проницаемости изолятора, а ε у воздуха и топлива различается (порядка 1 и 1,8 соответственно). В результате при заполнении бака топливом возрастает реактивное сопротивление датчика. Питаются ёмкостные топливомеры, как правило, от общей сети ЛА напряжением 115 В частотой 400 Гц, которое для питания датчиков понижается.
Основные преимущества ёмкосных датчиков: высокий порог чувствительности и небольшая инерционность. Основные недостатки: сильное влияние внешних электромагнитных полей.
Специфическая разновидность датчиков — сенсорные экраны на ёмкостном принципе.