Пуск однофазного двигателя
Для создания пускового момента однофазные двигатели снабжают пусковой обмоткой, пространственно смещенной относительно основной, рабочей обмотки на 90o. Пусковая обмотка подключается к сети через фазосдвигающие элементы: конденсатор или активное сопротивление.
На рисунке показана схема включения обмоток двигателя при конденсаторном пуске, где Р - рабочая обмотка, П - пусковая обмотка. Емкость фазосдвигающего элемента С подбирают таким образом, чтобы токи в рабочей и пусковой обмотках различались по фазе на 90o. Поскольку включение второй обмотки существенно улучшает механическую характеристику двигателя, в некоторых случаях применяют однофазные двигатели, в которых пусковая обмотка не отключается. Такие двигатели называют конденсаторными. Конденсаторный двигатель имеет высокий cos φ. Недостатками его являются сравнительно большая масса и габариты конденсатора, а также возникновение несинусоидального тока при искажениях питающего напряжения, которое в ряде случаев приводит к вредному воздействию на линии связи.
При легких условиях пуска (небольшой нагрузочный момент в пусковой период) применяют двигатели с пусковым сопротивлением R.
Наличие активного сопротивления в цепи пусковой обмотки обеспечивает меньший сдвиг фаз φп между напряжением и током в этой обмотке, чем сдвиг фаз φр в рабочей обмотке. В связи с этим токи в рабочей и пусковой обмотках оказываются сдвинутыми по фазе на угол φр — φп и образуют несимметричное (эллиптическое) вращающееся поле, благодаря которому и возникает пусковой момент. Двигатели с пусковым сопротивлением надежны в эксплуатации в выпускаются серийно. Пусковое сопротивление встраивают в корпус двигателя и охлаждают тем же воздухом, который охлаждает весь двигатель.
Включение трёхфазных двигателей в однофазную цепь.
Трехфазный асинхронный двигатель может работать от однофазной сети, если подключить его обмотки по следующим схемам.
В схеме на рисунке а) статорные обмотки соединены звездой, в схеме на рисунке б) статорные обмотки соединены треугольником. Величина емкости С ≈ 60 мкф на 1 кВт мощности.
Синхронные электромашины.
Синхронные машины используют в качестве источников электрической энергии переменного тока; их устанавливают на мощных тепловых, гидравлических и атомных электростанциях, а также на передвижных электростанциях и транспортных установках (тепловозах, автомобилях, самолетах). Конструкция синхронного генератора определяется в основном типом привода. В зависимости от этого различают турбогенераторы, гидрогенераторы и дизель-генераторы. Синхронные машины широко используют и в качестве электродвигателей при мощности 100 кВт и выше для привода насосов, компрессоров, вентиляторов и других механизмов, работающих при постоянной частоте вращения.
В электробытовых приборах и системах управления широкое применение получили различные синхронные микромашины — с постоянными магнитами, индукторные, реактивные, гистерезисные, шаговые.
В 1876 г. русский ученый П. Н. Яблочков разработал несколько образцов многофазных синхронных генераторов с электромагнитным возбуждением и электрически несвязанными фазами, предназначенных для питания созданных им дуговых электрических ламп (свечи Яблочкова). Первый трехфазный синхронный генератор изобрел известный русский электротехник М. О. Доливо-Добровольский. Этот генератор имел мощность 230 кВ • А, приводился во вращение от гидротурбины и обеспечивал электроснабжение международной электротехнической выставки в г. Франкфурте в 1891 г. по четырехпроводной электрической линии трехфазного тока.
Статор 1 синхронной машины (рисунок а) выполнен так же, как и асинхронной: на нем расположена трехфазная (в общем случае многофазная) обмотка 3. Обмотку ротора 4, питаемую от источника постоянного тока, называют обмоткой возбуждения, так как она создает в машине магнитный поток возбуждения.
Вращающуюся обмотку ротора соединяют с внешним источником постоянного тока посредством контактных колец 5 и щеток 6 (рисунок б). При вращении ротора 2 с некоторой частотой n2 поток возбуждения пересекает проводники обмотки статора и индуцирует в ее фазах переменную ЭДС Е, изменяющуюся с частотой (р - число пар полюсов)
f1 = рn2 /60
Если обмотку статора подключить к какой-либо нагрузке, то проходящий по этой обмотке многофазный ток Iа создает вращающееся магнитное поле, частота вращения которого
n1 = 60f1 /р
Поэтому n1 = n2, т. е. что ротор вращается с той же частотой, что и магнитное поле статора. Поэтому рассматриваемую машину называют синхронной. Результирующий магнитный поток Фрез синхронной машины создается совместным действием МДС обмотки возбуждения и обмотки статора, и результирующее магнитное поле вращается в пространстве с той же частотой, что и ротор.
В синхронной машине обмотку, в которой индуцируется ЭДС и проходит ток нагрузки, называют обмоткой якоря, а часть машины, на которой расположена обмотка возбуждения,— индуктором. Следовательно, в приведенной машине (рис. 6.1) статор является якорем, а ротор — индуктором. Для принципа действия и теории работы машины не имеет значения — вращается якорь или индуктор, поэтому в некоторых случаях применяют синхронные машины с обращенной конструктивной схемой: обмотку якоря, к которой подключают нагрузку, располагают на роторе, а обмотку возбуждения, питаемую постоянным током, — на статоре. Такую машину называют обращенной. Обращенные машины имеют сравнительно небольшую мощность, так как у них затруднен отбор мощности от обмотки ротора.
Таким образом, для установившихся режимов работы синхронной машины характерны следующие особенности:
а) ротор машины, работающей как в двигательном, так и в генераторном режимах, вращается с постоянной частотой, равной частоте вращающегося магнитного поля, т. е. n2=n1 ;
б) частота изменения ЭДС Е, индуцируемой в обмотке якоря, пропорциональна частоте вращения ротора;
в) в установившемся режиме ЭДС в обмотке возбуждения не индуцируется; МДС этой обмотки определяется только током возбуждения и не зависит от режима работы машины.