Назначение и классификация радиотехнических систем ближней навигации

Содержание

Введение …………………………………………………….……………………. 3

1 Общие сведения о системах ближней навигации ………………………….. 4

1.1 Назначение и классификация радиотехнических систем ближней навигации…………………………………………………………………………. 5

1.2 Радиотехнические системы посадки …………………………………... 6

2 Структура сигналов ближней навигации ………………. ………………… 12

2.1 Принцип действия и структура сигналов канала навигации VOR …. 12

2.2 Система повышенной точности PVOR ……………………………….... 20

2.3 Использование эффекта Доплера в системе DVOR …………………..27

Заключение …………………………………………………………………….. 30

Список Литературы ……………………………............................................. 31

ВВЕДЕНИЕ

Радиотехническая система ближней навигации (РСБН) является угломерно-дальномерной радионавигационной системой, разработанной в СССР во всесоюзном научно-исследовательском институте радиоаппаратуры.

В СССР было установлено более ста радиомаяков этой системы и большинство типов отечественных ВС было оснащено соответствующим бортовым оборудованием. В настоящее время в гражданской авиации большинство радиомаяков снято с эксплуатации, хотя кое-где они еще остаются на военных аэродромах. Причинами снятия системы с эксплуатации являются не только ее моральное устаревание, но и другие факторы. Оказалось, что система работает в таком диапазоне радиоволн, который официально выделен для систем неавиационного назначения, в частности, для сотовой телефонной связи. Кроме того, она не может быть использована на ВС иностранного производства, поскольку они не имеют соответствующего бортового оборудования. Ведь система отечественная. Поэтому в настоящее время не планируется замена РСБН более современным оборудованием аналогичного принципа действия, а вместо нее устанавливаются радиомаяки типа VOR и DME. Это вызывает определенное сожаление, поскольку до появления спутниковых навигационных систем РСБН была самой точной навигационной системой не только в стране, но, пожалуй, и в мире.

Несмотря на то, что РСБН, видимо, уходит в прошлое, полезно знать о характеристиках и возможностях этой системы.

Понятия «ближней навигации» и «дальней навигации» не имеют четкого определения. Чаще всего под ближней навигацией понимают навигацию с использованием наземных УКВ-радионавигационных средств, у которых дальность действия ограничена прямой видимостью и, следовательно, не очень велика. Под системами дальней навигации понимают такие РНС, которые обеспечивают прием навигационного сигнала на больших удалениях – например, тысяча километров и более.

В современной авиации ВС, летающие как на короткие, так и на длинные расстояния, могут использовать все виды навигационных систем, поэтому, их разделение на дальние и ближние не является необходимым.

Существует много систем, которые можно отнести к системам ближней навигации. Это VOR, DME, АРП. Название «РСБН» следует рассматривать как имя собственное, присвоенное конкретной разновидности навигационных систем ее разработчиками.

ГЛАВА 1. ОБЩИЕ СВЕДЕНИЯ О СИСТЕМАХ БЛИЖНЕЙ НАВИГАЦИИ

Назначение и классификация радиотехнических систем ближней навигации

К радиотехническим системам ближней навигации и посадки относятся системы, обеспечивающие определение местоположения летательного аппарата (ЛА) на расстоянии до 500 км относительно радиомаяка, а также положение ЛА относительно ВПП при заходе на посадку. В зависимости от типа ЛА на его борту может быть установлено навигационное и посадочное оборудование или комплексная система ближней навигации и посадки.

Основа систем ближней навигации (СБН) – сеть независимых наземных радиомаяков (РМ), по которым определяются навигационные параметры. Различают азимутальные, дальномерные и азимутально-дальномерные радиомаяки (РМ), которые устанавливают на аэродромах и в точках, соответствующих характерным участкам воздушных трасс. Для работы СБН выделены участки диапазона метровых и дециметровых волн, поэтому их дальность действия ограничивается дальностью прямой видимости.

Навигационные параметры системы ближней навигации – азимут ( Назначение и классификация радиотехнических систем ближней навигации - student2.ru ) и дальность ( Назначение и классификация радиотехнических систем ближней навигации - student2.ru ) определяются на ЛА относительно радионавигационной точки, в которой размещен РМ (рис. 1.1).


Назначение и классификация радиотехнических систем ближней навигации - student2.ru
Рис. 1.1. Определение местоположения ЛА
При известной высоте полета этих данных будет достаточно для нахождения положения ЛА в полярной системе координат относительно РМ, т.е. системы ближней навигации относятся к классу угломерно-дальномерных (азимутально-дальномерных) систем. Перспективен переход к дальномерным системам, обладающим большей точностью. В СБН выделяют каналы азимута и дальности. Каждый из каналов включает наземный РМ и бортовую аппаратуру ЛА.

Типысистем ближней навигации различаются по виду информативного параметра сигнала, используемого для определения навигационных параметров, а также по структуре системы в целом. Наибольшее распространение получили отечественная система РСБН и стандартизированная ICAO зарубежная система VOR/DME.

Система РСБН использует временной метод для определения азимута и дальности. В состав системы входят азимутально-дальномерные РМ и бортовая аппаратура. Система работает в диапазоне дециметровых волн. Отличительная особенность системы – возможность наземного наблюдения воздушной обстановки, определения координат и навигационного опознавания ЛА, а также использования бортовой аппаратуры для посадки при наличии посадочных РМ дециметрового диапазона. По этой причине РСБН можно классифицировать как комплексную систему ближней навигации и посадки. При наличии в комплекте бортовой аппаратуры специализированных вычислителей решается задача определения местоположения ЛА (в ортодромической или геосферической системе координат).

Наземный радиомаяк РСБН может устанавливаться как в районе аэродрома, так и на трасах полетов. В районе аэродрома РМ устанавливается на расстоянии 300…600 м от оси ВПП на удалении от центра до 1200 м. При установке на трассах учитывается нерабочая зона над радиомаяком ±45° и высота полета. В этом случае РМ смещается от линии пути самолета на величину двух нерабочих зон для конкретной высоты полета. В качестве наземных азимутально-дальномерных радиомаяков применяются радиомаяки РСБН-4Н, РСБН-6Н, Е-324, Е-326, Е-329. Бортовая аппаратура РСБН, устанавливаемая на ЛА: РСБН-6С, РСБН-7С, А-312, А-317, А-323, А-324, А-331 (РСБН-85). Диапазон частот, используемый в системе РСБН для передачи сигналов в направлении самолет-земля – 720…812,8 МГц, в направлении земля-самолет 873,6…1000,5 МГц.

Система VOR/DME основана на фазовом методе определения азимута и временном методе определения дальности. Система образуется при территориальном совмещении азимутального РМ типа VOR и дальномерного типа DME, которые могут также использоваться самостоятельно, образуя соответственно угломерную или дальномерную систему ближней навигации. На борту ЛА для определения азимута и дальности служат отдельные устройства. Азимутальный РМ работает в диапазоне метровых, а дальномерный – дециметровых волн. Требования к размещению радиомаяков в районе аэродрома аналогичны требованиям, предъявляемым к размещению радиомаяков РСБН. В качестве наземного азимутального радиомаяка может быть установлен РМА-90, в качестве дальномерного – РМД-90, РМД-90НП. ЛА оборудуются бортовой угломерной аппаратурой VOR: КУРС МП-2, КУРС МП-70, КУРС-93М, VIM-95, VOR-02. Дальномерная бортовая аппаратура DME: СДК-67, CД-67, CД-75M, DME/P-85, ВНД-94. Рабочий диапазон частот азимутального канала – 108…118 МГц, дальномерного – 960…1215 МГц.

Еще одной СБН, получившей распространение, является система TACAN. Система по принципу действия и назначению близка к системе VOR/DME. В некоторых вариантах систем TACAN возможно наземное наблюдение воздушной обстановки. В состав системы входит азимутально-дальномерный РМ и бортовая аппаратура, измеряющая азимут и дальность ЛА. Известна также система VORTAC – сочетание угломерного РМ VOR с дальномерным РМ системы TACAN.


1.2 Радиотехнические системы посадки

Назначение радиотехнических систем посадки в общем виде можно сформулировать следующим образом. С помощью системы посадки ЛА должен быть выведен с высокой вероятностью успешного решения задачи в некоторую ограниченную по размерам область пространства и при этом должны быть достигнуты определенная скорость и направление движения ЛА в пространстве.

Успех захода на посадку и посадки зависят от ряда факторов и их сочетаний, меняющихся случайным образом. Поэтому его исход носит вероятностный характер. При этом предъявляются весьма жесткие требования к надежности выполнения посадочных операций и по допустимому разбросу значений определяемых параметров движения ЛА на посадке. В частности, для наиболее совершенных систем посадки вероятности выхода ЛА за пределы допустимой области значений координат и скорости в определенной точке траектории (например, у порога ВПП) не должны превышать 10 -7.

В зависимости от используемого оборудования и принципов действия различают следующие системы посадки:

упрощенные системы посадки (ОСП – оборудование системы посадки);

радиолокационные системы посадки (РСП);

радиомаячные системы посадки (РМСП).

В свою очередь, в зависимости от используемого диапазона волн, радиомаячные системы посадки подразделяются на РМСП диапазонов метровых волн (MB), дециметровых волн (ДМВ) и сантиметровых волн (СМВ).

Упрощенные системы посадки обеспечивают вывод ЛА на аэро­дром, выполнение предпосадочного маневра и определение места ЛА в двух фиксированных точках траектории посадки. Систему ОСП устанавливают обычно на некатегорированных аэродромах. Наземное оборудование включает дальний и ближний приводные радиомаркерные пункты (ДПРМ и БПРМ), оснащенные дальней и ближней приводными аэродромными радиостанциями (ПРС) и маркерными радиомаяками (МРМ). Дальний и ближний радиомаркерные пункты устанавливают на расстояниях соответственно 4000±200 м и 1050±150 м от порога ВПП. Дальний МРМ обеспечивает экипажу контроль высоты полета, расстояния до точки приземления и готовности бортовых систем к обеспечению полета на конечном этапе захода на посадку. Ближний МРМ предназначен для информирования экипажа о близости визуального этапа посадки. В качестве маркерных радиомаяков могут быть установлены МРМ-48, МРМ-70, МРМ-В, РММ-95. ПРС используются для привода самолетов в район аэродрома, построения траектории предпосадочного маневра и посадки. Дальняя и ближняя ПРС различаются структурой сигналов опознавания: дальним ПАР назначается двухбуквенный, а ближним - однобуквенный позывные сигналы. Приводные аэродромные радиостанции – ПАР-9, ПАР-10, РМП-200. Аэродромы оборудуют, кроме того, светосигнальными системами, автоматическими радио­пеленгаторами (АРП) МВ-ДМВ диапазонов и обзорными радиолокаторами (ОРЛ). Расположение наземного радиотехнического оборудования в районе аэродрома показано на рис. 1.2.
Назначение и классификация радиотехнических систем ближней навигации - student2.ru
Рис. 1.2. Схема размещения оборудования системы ОСП
Бортовое оборудование состоит из автоматического радиокомпаса (АРК-15М, АРК-22, АРК-25), радиовысотомера (А-031, А-035, А-037, А-041, А-052, А-053), маркерного радиоприемника (МРП-66, А-611), измерителя скорости (ДИСС-7, ДИСС-013, ДИСС-016, ШО-13, система ДВС). Посадка по системе ОСП может осуществляться как в ручном, так и в автоматическом режимах.

Радиолокационные системы посадки позволяют на земле определять положение ЛА относительно требуемой траектории снижения и удаление ЛА от точки приземления. Они используются для наземного контроля процесса захода на посадку и, в случае необходимости, передачи на борт с помощью систем воздушной радиосвязи указаний о коррекции траектории. РСП предназначены для посадки самолетов, не имеющих специального посадочного оборудования, снабженных обычными связными радиостанциями и навигационными приборами, в сложных метеоусловиях днем и ночью. В состав системы входят обзорный и диспетчерский радиолокаторы. Обзорный радиолокатор используется для непрерывного наблюдения за общей воздушной обстановкой в районе аэродрома в радиусе 70…80 км и управления движением самолетов на подходах к аэродрому и в процессе их захода в зоне ожидания. Диспетчерский радиолокатор используется для наблюдения за воздушной обстановкой в радиусе 30…50 км от аэродрома и для контроля за летным полем. Для определения отклонения ЛА от траектории посадки в системе РСП применяется посадочный радиолокатор. В систему РСП входят также радиопеленгаторы и средства радиосвязи. Основное оборудование радиолокационной системы посадки устанавливается на расстоянии 150…200 м от оси ВПП, не ближе 750 м от начала ВПП и не далее ±200 м относительно центра ВПП. В настоящее время используются радиолокационные системы посадки типа РСП-6, РСП-11.

Радиомаячные системы посадки обеспечивают задание линии планирования самолета с помощью наземных радиомаяков при выполнении посадки. Информация об отклонениях от линии планирования поступает на приборы летчиков. Наземные радиомаяки формируют в пространстве две плоскости (рис. 1.3) курса и планирования (глиссады), пересечение которых определяет линию планирования (глиссаду).
Назначение и классификация радиотехнических систем ближней навигации - student2.ru
Рис. 1.3. Принцип задания глиссады
Управление ЛА осуществляется в пределах секторов вокруг глиссады планирования, горизонтальные и вертикальные размеры которых примерно равны ±4° и ±1° соответственно. Угол планирования (угол глиссады) при выполнении посадки выдерживается постоянным и равен примерно 3°.

Кроме радиомаячного оборудования, предназначенного для задания в пространстве линии планирования, в состав РМСП может входить радиотехническое и светотехническое оборудование, образующее упрощенную систему посадки, а также диспетчерское оборудование.

По используемому частотному диапазону различают:

системы посадки сантиметрового диапазона (угломерный канал ­– 5030…5091 МГц, дальномерный канал – 960…1215 МГц);

системы посадки дециметрового диапазона (курсовой канал – 905,1…932,4 МГц, глиссадный канал – 939,6…966 МГц, дальномерный канал: направление самолет-земля – 772…808 МГц, 939,6…966,9 МГц);

системы посадки метрового диапазона (курсовой канал – 108…112 МГц, глиссадный канал – 329…335 МГц, маркерный канал – 75 МГц).

Системы посадки диапазона СМВ предназначены для определения пространственных координат ЛА в определенной области пространства (обычно эта область охватывает сектор ±40° относительно оси ВПП в горизонтальной плоскости и сектор 1...15° в вертикальной) и для обеспечения полета по любой криволинейной четырехмерной пространственно-временной траектории посадки. Это свойство позволяет повысить пропускную способность аэродрома на 10…15 % и открывает возможность обхода густонаселенных жилых районов. РМСП СМВ может обеспечивать вывод ЛА на траекторию посадки, взлет, уход на второй круг и автоматическую передачу на борт требуемой для посадки технической и метеорологической информации. Несмотря на определенные преимущества перед другими СП, система широкого распространения в нашей стране пока не получила.

Расположение радиомаяков в районе аэродрома показано на рис. 1.4. КРМ устанавливается на продолжении оси ВПП со стороны, противоположной направлению посадки, на расстоянии 500…1200 м. Минимальное удаление КРМ от конца ВПП обусловлено высотой оборудования и требованиями безопасности при пролете самолетов над препятствиями. Максимальное удаление определено параметрами диаграммы направленности антенной системы. Основным вариантом размещения антенны КРМ следует считать расстояние 1100±100 м от конца ВПП.

ГРМ, из соображений безопасности посадки, также выносится в сторону от оси ВПП на расстояние 120…180 м и устанавливается на расстоянии 215…430 м от порога ВПП со стороны направления посадки. Расстояние от порога ВПП зависит от выбранного угла планирования. При выборе угла планирования равном 2°40¢ расстояние должно быть 320±60 м. МРМ самостоятельно или в составе радиомаркерных пунктов (ДПРМ и БПРМ) устанавливаются на расстоянии 4000±200 м и 1050±150 м от порога ВПП соответственно.

Назначение и классификация радиотехнических систем ближней навигации - student2.ru
Рис. 1.4. Схема размещения оборудования РМСП МВ
На аэродромах со сложным рельефом местности перед порогом ВПП в состав РМСП может дополнительно входить внутренний МРМ (ВнМРМ), предназначаемый для информирования экипажа о близости порога ВПП. Он должен размещаться на расстоянии 75….450 м от порога ВПП и не более чем на ±30 м смещен от ее оси.

На аэродромах со сложным рельефом местности в зоне захода на посадку или с другими особенностями в состав РМСП может быть включен, кроме того, еще и дополнительный внешний МРМ (ВМРМ), размещаемый на расстоянии до 11 км от порога ВПП.

Стандарты ICAO предусматривают необходимость использования двух приводных радиомаркерных пунктов, называемых внешним (дальним) ВПРМ и средним СПРМ, и возможность, в случае необходимости, установки третьего, внутреннего (ближнего), маркерного радиомаяка (ВнМРМ). Схема размещения РТС посадки по стандартам ICAO приведена на рис. 1.5.

Назначение и классификация радиотехнических систем ближней навигации - student2.ru
Рис. 1.5. Схема размещения оборудования РМСП МВ по стандартам ICAO
Внешний радиомаркерный пункт располагается на удалении 7200 м от порога ВПП, средний – на удалении 1050±150 м, а внутренний – на удалении 75...150 м. Средний радиомаркерный пункт предназначен для информирования экипажа о приближении к точке начала визуального наведения, внутренний радиомаяк – для обозначения момента про­лета высоты принятия решения.

Современные отечественные системы посадки разрабатываются и устанавливаются согласно требований, предъявляемых ICAO.

В случае если противоположные направления захода на посадку на данную ВПП обслуживаются различными системами по­садки, обеспечивается возможность функционирования только од­ной из них и блокировка другой.

Международная организация ICAO стандартизовала и классифицировала радиотехнические системы посадки по эксплуатационным характеристикам. В основу этой классификации, которая принята также в нашей стране, положена возможность обеспечения захода на посадку самолетов при определенных метеорологических условиях. Одним из основных показателей является высота принятия решения (ВПР) – это высота полета ЛА, на которой командир экипажа должен принять решение о посадке или о необходимости ухода на второй круг.

Радиомаячные системы посадки метрового диапазона волн соответствуют классификации ICAO. Различают системы I, II и III (А, В, С) категорий эксплуатационных характеристик:

система I категории обеспечивает управление самолетом при заходе на посадку до ВПР 60 м при визуальной видимости на ВПП не менее 800 м (наземное оборудование СП-50М, СП-90М);

система II категории обеспечивает управление самолетом при заходе на посадку до ВПР 30 м при визуальной видимости на ВПП не менее 400 м (наземное оборудование СП-68, СП-75, СП-90Н);

системы III категории предназначены для посадки с приземлением при значительном ограничении или отсутствии видимости земли, т.е. ВПР равна нулю (наземное оборудование СП-70, СП-80, СП-90).

Регламентированы три группы РМСП III категории, обеспечивающие посадку при визуальной видимости на ВПП:

система категории III А – 200 м;

система категории III В – 50 м;

система категории III С – при полном отсутствии видимости.

Таким образом, РМСП I, II, III категорий обеспечивают данные для управления самолетом от границ зоны действия до точки, расположенной на глиссаде на высоте соответственно 60, 30, 0 м над горизонтальной плоскостью, включающей ВПП.

В РМСП МВ предусмотрено опознавание аэродрома, с этой целью с сигналом курсового радиомаяка предаются позывные, присвоенные данному аэродрому.

Выделение посадочной информации системы диапазона МВ выполняет навигационно-посадочное оборудование угломерной системы VOR (см. п.1.1.1. При необходимости на борту ЛА устанавливается только посадочное оборудование ОСЬ-1, ILS-02, ILS-85

Системы посадки диапазона МВ различаются методами создания равносигнальных направлений. Принципы формирования посадочной информации и обработка ее бортовым оборудованием будут рассмотрены далее.


Наши рекомендации