Основные операции технологического процесса перегонки нефти
Процесс переработки нефти можно разделить на 3 основных этапа:
1. Разделение нефтяного сырья на фракции, различающиеся по интервалам температур кипения (первичная переработка) ;
2. Переработка полученных фракций путем химических превращений содержащихся в них углеводородов и выработка компонентов товарных нефтепродуктов (вторичная переработка);
3. Смешение компонентов с вовлечением, при необходимости, различных присадок, с получением товарных нефтепродуктов с заданными показателями качества (товарное производство).
Продукцией НПЗ являются моторные и котельные топлива, сжиженные газы, различные виды сырья для нефтехимических производств, а также, в зависимости от технологической схемы предприятия - смазочные, гидравлические и иные масла, битумы, нефтяные коксы, парафины. Исходя из набора технологических процессов, на НПЗ может быть получено от 5 до более, чем 40позиций товарных нефтепродуктов.
Нефтепереработка - непрерывное производство, период работы производств между капитальными ремонтами на современных заводах составляет до 3-х лет. Функциональной единицей НПЗ является технологическая установка - производственный объект с набором оборудования, позволяющего осуществить полный цикл того или иного технологического процесса.
В данном материале кратко описаны основные технологические процессы топливного производства - получения моторных и котельных топлив, а также кокса.
Первичная переработка нефти
Обессоленная нефть с ЭЛОУ поступает на установку атмосферно-вакуумной перегонки нефти, которая на российских НПЗ обозначается аббревиатурой АВТ - атмосферно-вакуумная трубчатка. Такое название обусловлено тем, что нагрев сырья перед разделением его на фракции, осуществляется в змеевиках трубчатых печей (рис.6) за счет тепла сжигания топлива и тепла дымовых газов.
АВТ разделена на два блока - атмосферной и вакуумной перегонки.
1.Атмосферная перегонка
Атмосферная перегонка (рис. 3,4) предназначена для отбора светлых нефтяных фракций - бензиновой, керосиновой и дизельных, выкипающих до 360°С, потенциальный выход которых составляет 45-60% на нефть. Остаток атмосферной перегонки - мазут.
Процесс заключается в разделении нагретой в печи нефти на отдельные фракции в ректификационной колонне - цилиндрическом вертикальном аппарате, внутри которого расположены контактные устройства (тарелки), через которые пары движутся вверх, а жидкость - вниз. Ректификационные колонны различных размеров и конфигураций применяются практически на всех установках нефтеперерабатывающего производства, количество тарелок в них варьируется от 20 до 60. Предусматривается подвод тепла в нижнюю часть колонны и отвод тепла с верхней части колонны, в связи с чем температура в аппарате постепенно снижается от низа к верху. В результате сверху колонны отводится бензиновая фракция в виде паров, а пары керосиновой и дизельных фракций конденсируются в соответствующих частях колонны и выводятся, мазут остаётся жидким и откачивается с низа колонны.
2. Вакуумная перегонка
Вакуумная перегонка (рис.3,5,6) предназначена для отбора от мазута масляных дистиллятов на НПЗ топливно-масляного профиля, или широкой масляной фракции (вакуумного газойля) на НПЗ топливного профиля. Остатком вакуумной перегонки является гудрон.
Необходимость отбора масляных фракций под вакуумом обусловлена тем, что при температуре свыше 380°С начинается термическое разложение углеводородов (крекинг), а конец кипения вакуумного газойля - 520°С и более. Поэтому перегонку ведут при остаточном давлении 40-60 мм рт. ст., что позволяет снизить максимальную температуру в аппарате до 360-380°С.
Разряжение в колонне создается при помощи соответствующего оборудования, ключевыми аппаратами являются паровые или жидкостные эжекторы (рис.7).
3.Стабилизация и вторичная перегонка бензина
Получаемая на атмосферном блоке бензиновая фракция содержит газы (в основном пропан и бутан) в объёме, превышающем требования по качеству, и не может использоваться ни в качестве компонента автобензина, ни в качестве товарного прямогонного бензина. Кроме того, процессы нефтепереработки, направленные на повышение октанового числа бензина и производства ароматических углеводородов в качестве сырья используют узкие бензиновые фракции. Этим обусловлено включение в технологическую схему переработки нефти данного процесса (рис.4), при котором от бензиновой фракции отгоняются сжиженные газы, и осуществляется её разгонка на 2-5 узких фракций на соответствующем количестве колонн.
17. Продукты прямой перегонки нефти ( мазут, соляровый дистиллят, керосин), применяемые в качестве сырья для крекинга, состоят из трех основных классов углеводородов: алканов, цикла-нов и ароматических. Сырье вторичного происхождения, например дистилляты коксования и каталитического крекинга, содержит еще и непредельные углеводороды. [1]
Продукты прямой перегонки нефти, чаще всего высококипящие фракции - мазут, газойль, соляровые дистилляты - подвергают переработке с целью получения бензина нагреванием до температур 500 - 650 С в определенных условиях. Образование бензина из тяжелых дистиллятов нефти происходит в результате расщепления сложных углеводородов на более простые. Вот почему эти процесы получили название крекинга ( англ. [2]
Реактивные топлива представляют собой преимущественнопродукты прямой перегонки нефти. При хороших низкотемпературных свойствах ( низкая температура кристаллизации, невысокая вязкость при низких температурах) воздушно-реактивной авиации требуются топлива с высокой теплотой сгорания и хорошими огневыми качествами. Таким требованиям отвечает смесь керосиновой и лигроиновой фракций. Керосиновая фракция является составляющей частью дизельных топлив, а выход ее на нефть невелик. Автотракторные трансмиссионные масла ( нигролы) ( ГОСТ 542 - 50) - продукты прямой перегонки нефти; подразделяют на зимние и летние.
18. Полиме́ры (греч. πολύ- — много; μέρος — часть) — неорганические и органические, аморфные и кристаллические вещества, состоящие из «мономерных звеньев», соединённых в длинные макромолекулы химическими или координационными связями. Полимер — это высокомолекулярное соединение: количество мономерных звеньев в полимере (степень полимеризации) должно быть достаточно велико (в ином случае соединение будет называться олигомером). Во многих случаях количество звеньев может считаться достаточным, чтобы отнести молекулу к полимерам, если при добавлении очередного мономерного звена молекулярные свойства не изменяются.[1] Как правило, полимеры — вещества смолекулярной массой от нескольких тысяч до нескольких миллионов.
Если связь между макромолекулами осуществляется с помощью слабых сил Ван-Дер-Ваальса, они называются термопласты, если с помощью химических связей — реактопласты. К линейным полимерам относится, например, целлюлоза, к разветвлённым, например, амилопектин, есть полимеры со сложными пространственными трёхмерными структурами.
В строении полимера можно выделить мономерное звено — повторяющийся структурный фрагмент, включающий несколько атомов. Полимеры состоят из большого числа повторяющихся группировок (звеньев) одинакового строения, например поливинилхлорид (—СН2—CHCl—)n,каучук натуральный и др. Высокомолекулярные соединения, молекулы которых содержат несколько типов повторяющихся группировок, называютсополимерами или гетерополимерами.
Полимеры имеют высокую стойкость в таких средах, как щелочи и концентрированные кислоты. В отличие от металлов они не подвержены электрохимической коррозии. С увеличением молекулярной массы снижается растворимость полимеров в растворителях органического происхождения. Полимеры с пространственной структурой практически не подвержены действию органических растворителей.
Большинство полимеров является диэлектриками. Полимеры в основном относятся к немагнитным веществам. Из всех применяемых конструкционных материалов полимеры имеют наименьшую теплопроводность и наибольшие теплоемкость и тепловую усадку. Тепловая усадка полимеров примерно в 10 – 20 раз больше, чем металлов. Причиной потери герметичности уплотнительными узлами при низких температурах является стеклование резины и резкое различие коэффициентов расширения металла и резины в застеклованном состоянии.
Для полимеров характерен широкий диапазон механических характеристик, сильно зависящий от их структуры. Кроме структурных параметров большое влияние на механические свойства полимеров оказывают внешние факторы: температура, длительность и частота или скорость нагружения, давление, вид напряженного состояния, термообработка, характер окружающей среды и др.
Особенностями механических свойств полимеров являются их удовлетворительная прочность, но малая жесткость по сравнению с металлическими материалами.
Полимер образуется из мономеров в результате реакций полимеризации или поликонденсации. К полимерам относятся многочисленные природные соединения: белки, нуклеиновые кислоты, полисахариды, каучук и другие органические вещества. В большинстве случаев понятие относят к органическим соединениям, однако существует и множество неорганических полимеров. Большое число полимеров получают синтетическим путём на основе простейших соединений элементов природного происхождения путём реакций полимеризации, поликонденсации и химических превращений. Названия полимеров образуются из названия мономера с приставкой поли-: полиэтилен, полипропилен, поливинилацетат и т. п.
19. Пластмассы имеют ряд ценных свойств: высокую электроизоляционную и химическую стойкость, малую звуко- и теплопроводность, хорошую водо-, морозо- и светостойкость. Большинство пластмасс стойко к различным минеральным маслам и бензину. Они в среднем в два раза легче алюминия (удельный вес от 0,9 до 1,8), обладают высоким сопротивлением истиранию, хорошо работают в условиях вибрационных нагрузок, имеют высокую механическую прочность. Пластические массы хорошо обрабатываются и способны легко соединяться с металлами, тканями, древесиной. Коэффициент трения пластмасс зависит от их состава. Пластмассы с асбестовым наполнителем (асботекстолит) являются фрикционными материалами, а пластмассы с наполнителем в виде хлопчатобумажной ткани (текстолит) или древесного шпона, а также целый ряд чистых смол являются антифрикционными материалами.
Все эти свойства пластмасс делают их весьма ценным конструкционным материалом.
К недостаткам пластмасс можно отнести их малую теплостойкость, которая лежит в пределах 35-250°С и зависит от типа применяемой смолы.
B зависимости от поведения пластических масс при нагревании они разделяются на два класса: термореактивные и термопластичные пластмассы (термопласты).
Термореактивными называются пластмассы, которые под действием температуры и давления претерпевают существенные химические изменения и переходят в неплавкие и практически нерастворимые продукты, причем процесс необратим. Готовые изделия, полученные из термореактивных пластмасс, не требуют охлаждения при извлечении их из прессоформы и не поддаются повторному формованию.
Термопластичными называются пластмассы, которые при нагревании становятся пластичными и затвердевают при охлаждении, не претерпевая при этом химических изменений, причем этот процесс может быть повторен неоднократно.
При изготовлении машиностроительных деталей чаще применяются термореактивные пластмассы, так как они более стабильны и прочны.
Пластические массы имеют исключительно важное значение для развития различных отраслей народного хозяйства и в первую очередь машиностроения. Они являются самостоятельным конструкционным материалом и обладают рядом ценных технических свойств, которых не имеют металлы и другие природные материалы.
Внедрение в машиностроение, новых синтетических материалов с высокой механической прочностью и стойкостью к действию нефтепродуктов позволяет изготовлять целые узлы из пластмасс, что ведет к сокращению расхода металлов и уменьшает массу изделий.
Пластическими массами называются материалы, получаемые на основе искусственных и естественных смол, и их смеси с различными наполнителями.
При нормальных условиях пластмассы представляют собой твердые или эластичные материалы. Под влиянием температуры и давления пластмассы могут переходить в пластическое состояние, принимать и сохранять приданную им форму.
Пластмассы по своему составу бывают простыми, если они состоят из чистых связующих смол, или сложными (композиционными), если в них, кроме связующего вещества, содержатся и другие компоненты: наполнители, пластификаторы, смазывающие вещества, стабилизаторы, красители, катализаторы или ускорители.
Связующее вещество (смола) определяет основные свойства пластмасс. При изготовлении пластмасс наиболее широко применяют искусственные смолы — продукты переработки каменного угля, нефти и других материалов. Пластмассы, полученные на основе искусственных смол, относятся к полимерным соединениям. Естественные смолы (янтарь, шеллак) и продукты переработки естественных материалов (асфальт, канифоль и др.) применяются значительно реже.
Наполнители придают пластмассам определенные физико-механические свойства и во многих случаях удешевляют стоимость пластмассовых деталей.
B качестве наполнителей используются органические вещества: древесная мука, древесный шпон, бумага, ткани, хлопковые очесы, стружка, опилки и пр., а также минеральные вещества: кварцевая мука, тальк, каолин, асбест, стекловолокно, стеклоткань и пр.
Пластификаторы обеспечивают пластмассам пластичность, увеличивают текучесть. В качестве их используются дибутилфталат, трикрезилфосфат, камфора и т. п.
Смазывающие вещества предотвращают прилипание изготовленного изделия к форме. К ним относятся стеарин, воск и т. п.
Стабилизаторы повышают термостабильность и связывают побочные продукты. Стабилизаторами служат неорганические (вода, фосфаты) и органические (аминокислоты) вещества.
Красители (нигрозин, мумия и др.) придают пластмассам требуемую окраску.
Катализаторы (известь, окись магния) сокращают время отвердевания.
По композиционному составу различают два вида пластмасс; ненаполненные и наполненные. В зависимости от физико-механических свойств при нормальной температуре, в основе которых лежит модуль упругости, пластмассы делят на жесткие, полужесткие, мягкие и эластичные.
Жесткие пластмассы — твердые упругие материалы аморфной структуры. Характеризуются незначительным удлинением, хрупким разрушением при разрыве. Примерами жестких пластмасс служат фенопласты и аминопласты.
Полужесткие пластмассы — твердые вязкоупругие материалы кристаллической структуры. Характеризуются высоким относительным удлинением при разрыве. К таким пластмассам относятся полипропиленовые трубы, полиамидные пластики.
Мягкие пластмассы обладают высоким относительным удлинением
при разрыве и низким модулем упругости. К ним относятся полиэтиленовая пленка, трубы, поливинилацетатные пленки.
Эластичные пластмассы — мягкие, гибкие материалы, характеризующиеся большими деформациями при растяжении. Примером эластичных пластмасс служат каучуковые резины.
По назначению и отличительным признакам пластмассы бывают
общего назначения, высокопрочные, антикоррозионные, прозрачные, морозо- и теплостойкие, электроизоляционные.
Пластмассы общего назначения — материалы, к показателям физико-механических и химических свойств которых не предъявляют особых требований. К этим материалам относятся отделочные, декоративные, упаковочные, хозяйственно-бытовые и другие изделия из пластмасс (поливинилхлорида, полипропилена, фенопластов и др.).
Высокопрочные пластмассы — полиформальдегид, полиэфирные пластики, поликарбонаты — характеризуются высоким пределом прочности при сжатии и изгибе, большой износостойкостью и высоким коэффициентом трения (фрикционные свойства). Эти материалы способны заменить бронзу и баббит, например, в подшипниках, втулках; их используют для изготовления труб, зубчатых колес, гребных винтов.
Антикоррозионные пластмассы — каучуки, полиизобутилен, эпоксипласты — обладают высокой химической стойкостью к воде, кислотам, растворам солей и органическим растворителям. Эти материалы используют вместо металлических деталей в оборудовании и конструкциях, эксплуатирующихся в агрессивных средах, из них
изготовляют контейнеры-цистерны жидкого топлива.
Прозрачные пластмассы — полиметилметакрилат, полистирол — пропускают лучи света в широком диапазоне волн, и в частности ультрафиолетовую часть спектра, благодаря чему они не уступают по своим оптическим свойствам лучшим сортам стекла и хрусталя и значительно превосходят в этом силикатное стекло. Из таких пластмасс изготовляют оптические системы осветительной арматуры.
Морозостойкие пластмассы — полиизобутилен, этилцеллюлоза, поликарбонат — сохраняют эластичные свойства и гибкость при низких (минусовых) температурах. Изделия и конструкции, изготовленные из таких пластмасс, можно эксплуатировать в атмосферных условиях.
Теплостойкие пластмассы — полиорганосилоксаны, политрихлор-этилен, фенопласты — обладают способностью не размягчаться при повышении температуры. Такие пластмассы широко применяют в промышленности и быту, в отдельных случаях они заменяют металл
и керамику.
Электроизоляционные пластмассы — полиэтилен, поливинилхлорид, полистирол — характеризуются низкой диэлектрической постоянной, высокой электрической прочностью, высоким объемными поверхностным сопротивлением. Их применяют для изоляции проводов и электрооборудования в электротехнике, для замены эбонита.
Теплоизоляционные пластмассы — поливинилхлорид, полистирол, полиуретан, фенопласты — отличаются низкой теплопроводностью. К таким пластмассам относятся пористые газонаполненные материалы — пено и поропласты, применяемые для теплоизоляции холодильных приборов и установок, жилых помещений, многослойных
стеновых панелей и т. п.
20. Виды пластмасс и их применение базируются на том, какие полимеры лежат в основе – природные или синтетические. Их подвергают нагреванию, давлению, после чего выполняют формовку изделий разной сложности. Главное, что при этих манипуляциях сохраняется форма готового изделия. Все пластмассы бывают термопластичными, то есть обратимыми, и термореактивными (необратимыми).
Физико-механические свойства пластмасс оказывают решающее влияние на стойкость режущего инструмента, качество обработки и производительность фрезерования.
Физико-механические свойства пластмасс определяются следующими величинами: теплостойкостью по Мартенсу, коэффициентом линейного расширения, водопог лощением, маслостойкостью, твердостью по Бринелю, удельной ударной вязкостью, пределами прочности при растяжении, сжатии и изгибе, относительным удлинением, модулем упругости, удельным объемным и поверхностным сопротивлением, электрической прочностью, тангенсом угла диэлектрических потерь, диэлектрической постоянной. [3]
Физико-механические свойства пластмасс существенно отличаются от свойств металлов: коэффициент линейного расширения у них в 5 - 10 раз больше, а модуль упругости в 10 - 100 раз меньше, чем у стали, иногда наблюдается изменение размеров и формы пластмассовых деталей в процессе эксплуатации. Поэтому механическое распространение на них системы допусков и посадок, разработанной для металлических деталей, невозможно.
Пофизико-механическим свойствам пластмассы делятся на термопласты и реактопласты. Термопласты - полимеры, постоянно сохраняющие способность к формованию при определенных температуре и давлении и теряющие эту способность после длительного термического воздействия. Реактопласты - пластмассы, способные формоваться при нагреве под давлением на определенной стадии производства и теряющие способность к формованию в результате термического воздействия.