Потенциальный барьер конечной ширины
ТУННЕЛЬНЫЙ ЭФФЕКТ
6.49 Потенциальный барьер конечной ширины___________________________________
[U0 — высота потенциального барьера; Е — полная энергия частицы; m — масса частицы]
6.50 Энергия частицы больше высоты потенциального барьера_____________________
[k1,3 = и k2 = — волновые числа; λ 1, 3 и λ2 — соответственно длины волн де Бройля в областях 1, 3 и 2]
Общие решения уравнений Шредингера___________________________________________
В области 3 имеется только прошедшая барьер волна, поэтому коэффициент В3 принят равным нулю.
♦ соответствует плоской волне, распространяющейся в положительном направлении оси х (падающей волне), е -ikx— отраженной волне. О волнах может идти речь после умножения на временной множитель, так как Ψ— координатная часть волновой функции.
Возможное определение коэффициентов отражения и прозрачности
Вывод.В случае Е >U0 волна на границе 1 и 2 частично отражается ( и частично проходит в область 2, затем она опять на границе 2 и 3 частично отражается ( ) и частично проходит в область 3. В области 2 (см. рисунок 6.50) длина волны де Бройля больше, чем в областях 1 и З.
Итак, при E > U0 имеем k1,3 > k2 и λ2 > λ1,3
Энергия частицы
меньше высоты потенциального барьера (Е < U0)_____________________________
Уравнение Шредингера_________________________________________________________
Общие решения уравнений Шредингера__________________________________________
В области 2 решение Ψ2 (х) не соответствует плоским волнам, распространяющимся в обе стороны (показатели экспонент не мнимые, а действительные).
♦ В области 3 имеется только волна, прошедшая сквозь барьер и распространяющаяся слева направо, поэтому принято В3 = 0. Из условий непрерывности волновой функции и ее первой производной в точках х = 0 и х = можно найти коэффициенты А2 и В2. Можно показать, что для высокого и широкого барьера »1) В2 » А2, а тогда на границе потенциального барьера, где х = 0, опреде ляющим членом волновой функции Ψ2 является член, содержащий В2 .
Вывод.В случае Е < U0, согласно квантовой механике, микрочастица может «пройти» сквозь потенциальный барьер. Это специфическое квантовое явление получило название туннельного эффекта.
6.53 Туннельный эффект________________________________________________________________
Волновые функции в областях 1, 2 и 3_________________________________________________
6.52 |
Выводы.Волновая функция не равна нулю и внутри барьера, а в области 3, если барьер не очень широк, будет опять иметь вид волн де Бройля с тем же импульсом, т. е. с той же частотой, но с меньшей амплитудой. Следовательно, частица имеет отличную от нуля вероятность прохождения сквозь потенциальный барьер конечной ширины — наблюдается туннельный эффект.
6.54 Коэффициент прозрачности для прямоугольного барьера______________________
Коэффициент прозрачности (вероятность проникновения
сквозь потенциальный барьер конечной ширины)___________________________
D быстро убывает с увеличением ширины барьера, а также с ростом его высоты.
[U0 — высота потенциального барьера; Е — энергия частицы; — ширина прямоугольного барьера; т — масса частицы; — постоянная Планка; D0 — постоянный множитель, который, как показывают точные расчеты, не очень отличается от единицы]
6.55 Коэффициент прозрачности для барьера произвольной формы____ ___________
Эта формула — хорошее приближение в случае потенциального барьера произвольной формы, если барьер удовлетворяет условию квазиклассического приближения (достаточно гладкая форма кривой).
♦ Эта формула — обобщение формулы для D в случае прямоугольного барьера.
6.56 Выводы относительно поведения классической
и квантовой частиц_______________________________________________________
При Е < U0 по классической теории частицы не смогут преодолеть потенциального барьера и отразятся от него; согласно квантовой теории, часть частиц отражается, а часть имеет отличную от нуля вероятность пройти сквозь потенциальный барьер. При Е > U0,по классической теории все частицы преодолевают потенциальный барьер; согласно квантовой теории, часть частиц проходит, а часть отражается. Как подбаръерное прохождение, так и надбарьерное отражение являются специфическими квантовыми эффектами, связанными с волновыми свойствами частиц.