Потенциальный барьер конечной ширины

ТУННЕЛЬНЫЙ ЭФФЕКТ

6.49 Потенциальный барьер конечной ширины___________________________________

потенциальный барьер конечной ширины - student2.ru

[U0 — высота потенциального барьера; Е — полная энергия частицы; m — масса частицы]

6.50 Энергия частицы больше высоты потенциального барьера_____________________

потенциальный барьер конечной ширины - student2.ru

[k1,3 = потенциальный барьер конечной ширины - student2.ru и k2 = потенциальный барьер конечной ширины - student2.ru — волновые числа; λ 1, 3 и λ2 — соответственно длины волн де Бройля в областях 1, 3 и 2]

Общие решения уравнений Шредингера___________________________________________

потенциальный барьер конечной ширины - student2.ru В области 3 имеется только прошедшая барьер волна, поэтому коэффициент В3 принят равным нулю.

потенциальный барьер конечной ширины - student2.ru соответствует плоской волне, распространяющейся в положительном направлении оси х (падающей волне), е -ikx— отраженной волне. О волнах может идти речь после умножения на временной множитель, так как Ψ— координатная часть волновой функции.

Возможное определение коэффициентов отражения и прозрачности

потенциальный барьер конечной ширины - student2.ru

Вывод.В случае Е >U0 волна на границе 1 и 2 частично отражается ( потенциальный барьер конечной ширины - student2.ru и частично проходит в область 2, затем она опять на границе 2 и 3 частично отражается ( потенциальный барьер конечной ширины - student2.ru ) и частично проходит в область 3. В облас­ти 2 (см. рисунок 6.50) длина волны де Бройля больше, чем в областях 1 и З.

потенциальный барьер конечной ширины - student2.ru

Итак, при E > U0 имеем k1,3 > k2 и λ2 > λ1,3

Энергия частицы

меньше высоты потенциального барьера (Е < U0)_____________________________

Уравнение Шредингера_________________________________________________________

потенциальный барьер конечной ширины - student2.ru

Общие решения уравнений Шредингера__________________________________________

потенциальный барьер конечной ширины - student2.ru В области 2 решение Ψ2 (х) не соответствует плоским волнам, распространяющимся в обе стороны (показатели экспонент не мнимые, а действительные).

♦ В области 3 имеется только волна, прошедшая сквозь барьер и распространяющаяся слева направо, поэтому принято В3 = 0. Из условий непрерывности волновой функции и ее первой производной в точках х = 0 и х = потенциальный барьер конечной ширины - student2.ru можно найти коэффициенты А2 и В2. Можно показать, что для высокого и широкого барьера потенциальный барьер конечной ширины - student2.ru »1) В2 » А2, а тогда на границе потенциального барьера, где х = 0, опреде ляющим членом волновой функции Ψ2 является член, содержащий В2 потенциальный барьер конечной ширины - student2.ru .

Вывод.В случае Е < U0, согласно квантовой механике, микрочастица может «пройти» сквозь потенциальный барьер. Это специфическое квантовое явление получило название туннельного эффекта.

6.53 Туннельный эффект________________________________________________________________

Волновые функции в областях 1, 2 и 3_________________________________________________

потенциальный барьер конечной ширины - student2.ru

потенциальный барьер конечной ширины - student2.ru потенциальный барьер конечной ширины - student2.ru потенциальный барьер конечной ширины - student2.ru
6.52


потенциальный барьер конечной ширины - student2.ru Выводы.Волновая функция не равна нулю и внутри барьера, а в области 3, если барьер не очень широк, будет опять иметь вид волн де Бройля с тем же импульсом, т. е. с той же частотой, но с меньшей амплитудой. Следовательно, частица имеет отличную от нуля вероятность прохождения сквозь по­тенциальный барьер конечной ширины — наблюдается туннельный эффект.

6.54 Коэффициент прозрачности для прямоугольного барьера______________________

Коэффициент прозрачности (вероятность проникновения

сквозь потенциальный барьер конечной ширины)___________________________


потенциальный барьер конечной ширины - student2.ru D быстро убывает с увеличением ширины барьера, а также с ростом его высоты.

[U0 — высота потенциального барьера; Е — энергия частицы; потенциальный барьер конечной ширины - student2.ru — ширина прямо­угольного барьера; т — масса частицы; потенциальный барьер конечной ширины - student2.ru — постоянная Планка; D0 — по­стоянный множитель, который, как показывают точные расчеты, не очень отли­чается от единицы]

6.55 Коэффициент прозрачности для барьера произвольной формы____ ___________


потенциальный барьер конечной ширины - student2.ru потенциальный барьер конечной ширины - student2.ru

Эта формула — хорошее приближение в случае потенциального барьера произволь­ной формы, если барьер удовлетворяет ус­ловию квазиклассического приближения (достаточно гладкая форма кривой).

♦ Эта формула — обобщение формулы для D в случае прямоугольного барьера.

6.56 Выводы относительно поведения классической

и квантовой частиц_______________________________________________________


При Е < U0 по классической теории частицы не смогут преодолеть потен­циального барьера и отразятся от него; согласно квантовой теории, часть частиц отражается, а часть имеет отличную от нуля вероятность пройти сквозь потенциальный барьер. При Е > U0,по классической теории все частицы преодолевают потенциальный барьер; согласно квантовой тео­рии, часть частиц проходит, а часть отражается. Как подбаръерное про­хождение, так и надбарьерное отражение являются специфическими квантовыми эффектами, связанными с волновыми свойствами частиц.

Наши рекомендации