Основное уравнение гидростатики

Рассмотрим случай равновесия жидкости в состоя­нии «абсолютного покоя», т.е. когда на жидкость дейст­вует только сила тяжести. Поскольку объём жидкости в сосуде мал по сравнению с объёмом Земли, то уровень свободной поверхности жидкости в сосуде можно счи­тать горизонтальной плоскостью. Давление на свобод­ную поверхность жидкости равно атмосферному давле­ Основное уравнение гидростатики - student2.ru нию р0. Определим давление р в произвольно выбран­ной точке М, расположенной на глубине h. Выделим

около точки М горизонтальную площадку площадью dS . Построим на данной площадке вертикальное тело, ограниченное снизу самой площадкой, а сверху (в плоскости свобод­ной поверхности жидкости) её проекцией. Рассмотрим равновесие полученного жидкого тела. Давление на основание выделенного объёма будет внешним по отношению к жид­кому телу и будет направлено вертикально вверх. Запишем уравнение равновесия в про­екции на вертикальную ось тела.

Основное уравнение гидростатики - student2.ru

Сократив все члены уравнения на dS, получим:

Основное уравнение гидростатики - student2.ru

Давление во всех точках свободной поверхности одинаково и равно р0, следова­тельно, давление во всех точках жидкости на глубине h также одинаково согласно основ­ному уравнения гидростатики. Поверхность, давление на которой одинаково, называется поверхностью уровня. В данном случае поверхности уровня являются горизонтальными плоскостями.

Выберем некоторую горизонтальную плоскость сравнения, проходящую на расстоя­нии z0 от свободной поверхности, тогда можно записать уравнение гидростатики в виде:

Основное уравнение гидростатики - student2.ru

Все члены уравнения имеют линейную размерность и носят название:

- геометричкская высота,

Основное уравнение гидростатики - student2.ru - пьезометрическая высота

Величина Основное уравнение гидростатики - student2.ru носит название гидростатического напора.

Основное уравнение гидростатики, доказанное на примере жидкости находящейся под действием только сил тяжести, будет справедливо и для жидкости, которое испытыва­ет на себе ускорение переносного движения. Под действием сил инерции переносного движения будет меняться положение свободной поверхности жидкости и поверхностей равного давления относительно стенок сосуда и относительно горизонтальной плоскости. Вид этих поверхностей целиком зависти от комбинации ускорений переносного движения и ускорения сил тяжести. В литературе состояние равновесия жидкости при наличии пе­реносного движения называется относительным покоем жидкости. Любые комбинации ускорений сводятся к двум возможным видам равновесия жидкости

Равновесие жидкости при равномерно ускоренном прямолинейном движении со­суда. Примером может быть равновесие жидкости в цистерне, движущейся с неко­торым ускорением а. В этом случае на жидкость будут действовать силы тяжести Основное уравнение гидростатики - student2.ru и сила инерции равномерно укоренного движения цистерны Основное уравнение гидростатики - student2.ru . Тогда равно-

действующая единичная массовая сила определиться как сумма векторов ускорения пере­носного движения и ускорения свободного падения.

Основное уравнение гидростатики - student2.ru

При данных условиях вектор единичной массовой силы переносного движения а бу­дет направлен в сторону противоположную движению цистерны, ускорение свободного падения g, как всегда ориентировано вертикально вниз, т.е. как показано на рисунке. При движении цистерны начальное положение свободной поверхности жидкости изменится. Новое положение свободной поверхности жидкости, согласно основному условию равно­весия жидкости будет направлена перпендикулярно вектору Основное уравнение гидростатики - student2.ru , т.к., равнодействующий вектор массовых сил должен быть направлен по внутренней нормали к свободной поверх­ности жидкости. Наклон свободной поверхности жидкости к горизонтальной плоскости определяется соотношением ускорений Основное уравнение гидростатики - student2.ru

Выберем некоторую точку М расположенную внутри жидкости на глубине Основное уравнение гидростатики - student2.ru под уровнем свободной поверхности (расстояние до свободной поверхности жидкости изме­ряется по нормали к этой поверхности). В точке М выделим малую площадку Основное уравнение гидростатики - student2.ru парал­лельную свободной поверхности жидкости. Тогда уравнение равновесия жидкости запи­шется в следующем виде:

Основное уравнение гидростатики - student2.ru

Величину Основное уравнение гидростатики - student2.ru заменим эквивалентной величиной Основное уравнение гидростатики - student2.ru , где h -погружение точки М под уровень свободной поверхности жидкости (измеряется по вертикали). Эти две величины

одинаковы, т.к. Основное уравнение гидростатики - student2.ru . После этих преобразований уравнение равновесия

жидкости в цистерне примет привычный вид, соответствующий записи основного закона гидростатики:

Основное уравнение гидростатики - student2.ru

Таким образом, давление в любой точке жидкости будет зависеть только от положе­ния этой точки относительно уровня свободной поверхности жидкости. Поверхности рав­ного давления будут параллельны свободной поверхности жидкости, и иметь такой же ук­лон Основное уравнение гидростатики - student2.ru

Равновесие жидкости в равномерно вращающемся сосуде. Свободная поверхность жидкости, залитой в цилиндрический сосуд и находящейся под действием сил тяжести примет форму горизонтальной плоскости на некотором уровне Основное уравнение гидростатики - student2.ru относительно дна сосу­да. После того как мы приведём сосуд во вращение вокруг его вертикальной оси с некоторой постоянной угловой скоростью со = const, начальный уровень свободной по­верхности жидкости изменится: в центре сосуда он пони­зится, а по краям сосуда повысится. При этом форма сво­бодной поверхности примет явно вид криволинейной по­верхности вращения. Это явление объясняется тем, что Основное уравнение гидростатики - student2.ru при вращении сосуда вокруг своей оси жидкость в нём бу­дет испытывать ускорение переносного движения Основное уравнение гидростатики - student2.ru направленное в сторону стенок сосуда. Поскольку равнодействующая двух сил: силы тя­жести и центробежной силы должна быть направлена по нормали к свободной поверхно­сти жидкости в каждой точке поверхности, то эта равнодействующая будет иметь, как быль сказано выше, две составляющие соответственно силу тяжести, направленную вер­тикально вниз и центробежную, направленную в горизонтальной плоскости.

Основное уравнение гидростатики - student2.ru

В каждой точке свободной поверхности жидкости АОВ вектор углового ускорения Основное уравнение гидростатики - student2.ru будет направлен под некоторым углом а по отношению к касательной плоскости, проходящей через данную точку свободной поверхности.

Основное уравнение гидростатики - student2.ru

Отсюда:

Основное уравнение гидростатики - student2.ru

В центре на оси вращения, на расстоянии Основное уравнение гидростатики - student2.ru от дна сосуда будет расположена

самая низкая точка свободной поверхности жидкости, т.е. Основное уравнение гидростатики - student2.ru

Основное уравнение гидростатики - student2.ru

Отсюда: свободная поверхность жидкости находящейся в равномерно вращающемся вокруг его вертикальной оси сосуде будет иметь вид параболоида вращения (кривая АОВ-парабола).

Выберем любую точку жидкости на глубине под свободной поверхностью h (в част­ности точка находится на дне сосуда), тогда давление в ней будет равно:

Основное уравнение гидростатики - student2.ru

Этот вывод можно распространить и на более сложные случаи вращения сосуда, на­клоняя ось его вращения под углом к горизонту; результат получим тот же, что подтвер­ждает универсальность формулы основного урав­нения гидростатики.

2.4. Дифференциальное уравнение равнове­сия жидкости

После рассмотрения некоторых частных слу­чаев равновесия жидкости рассмотрим общее диф­ Основное уравнение гидростатики - student2.ru ференциальное равновесия в самом общем виде. Для этой цели выделим отсек жидкости малых раз­меров в виде параллелепипеда. Масса жидкости в выделенном объёме:

Основное уравнение гидростатики - student2.ru

На боковые грани параллелепипеда действуют силы давления: (на левую и правую грани соответственно): Основное уравнение гидростатики - student2.ru . На переднюю и заднюю грани: Основное уравнение гидростатики - student2.ru , на нижнюю

и верхнюю грани: Основное уравнение гидростатики - student2.ru

Основное уравнение гидростатики - student2.ru

Поскольку давление на правую грань больше, то i Основное уравнение гидростатики - student2.ru

По аналогии можно записать силы давления на остальные пары граней.

на переднюю Основное уравнение гидростатики - student2.ru , на заднюю Основное уравнение гидростатики - student2.ru , на нижнюю

Основное уравнение гидростатики - student2.ru , на верхнюю Основное уравнение гидростатики - student2.ru Проекции массовых сил на координатные оси:

на ось ОХ будет на ось ОУ будет

на ось OZ будет Основное уравнение гидростатики - student2.ru Тогда сумма сил действующих вдоль оси ОХ:

Основное уравнение гидростатики - student2.ru

сумма сил действующих вдоль оси 07:

Основное уравнение гидростатики - student2.ru

сумма сил действующих вдоль оси OZ:

Основное уравнение гидростатики - student2.ru

где: Основное уравнение гидростатики - student2.ru , проекции ускорения массовых сил на координатные оси.

После преобразования получим систему дифференциальных уравнений равновесия жидкости:

Основное уравнение гидростатики - student2.ru i i >

2.5. Сообщающиеся сосуды

В своей практической деятельности человек часто сталкивается с вопросами равно­весия жидкости в сообщающихся сосудах, когда два сосуда А и В соединены между со­бой жёстко или гибким шлангом. Сами сосуды (А и В) обычно называются коленами. Такой гидравлический элемент часто используется в различных гидравличе­ских машинах (гидравлические прессы и др.), системах гидропривода и гидроавтоматики, различных измери­тельных приборах и в ряде других случаев. С природ­ Основное уравнение гидростатики - student2.ru ными сообщающимися сосудами человек встречается с давних пор: сообщающимися сосудами больших раз­меров являются водонасыщенные пласты горных пород с системой колодцев, играющих роль отдельных колен природной гидродинамической системы.

В открытых сообщающихся сосудах, заполненных однородной жидкостью свобод­ный уровень жидкости устанавливается на одном и том же уровне в обоих коленах. Если в коленах сосудов залиты две несмешивающиеся жидкости с различной плотностью, то свободные уровни жидкости в правом и левом коленах устанавливаются на разных высо­тах в зависимости от соотношения плотностей жидкостей.

Для типичного случая, изображённого на рисунке, запишем уравнение равновесия жидкости относительно уровня раздела жидкостей.

или: Основное уравнение гидростатики - student2.ru

В закрытых сообщающихся сосудах давления на свободную поверхность могут быть шными, тогда уравнение равновесия будет иметь следующий вид:

Основное уравнение гидростатики - student2.ru

2.6. Сила давления жидкости па плоскую поверхность, погружённую в жид­кость

Согласно основному закону гидростатики величина давления р определяется глу­биной погружения точки под уровень свободной поверхности h жидкости и величиной

плотности жидкости р.

Для горизонтальной поверхности величина давления одинакова во всех точках этой поверхно­сти, т.к.:

Основное уравнение гидростатики - student2.ru Отсюда: Основное уравнение гидростатики - student2.ru

Основное уравнение гидростатики - student2.ru

Таким образом, Сила давления жидкости на горизонтальную поверхность (дно сосу­да) равно произведению площади этой поверхности на величину давления на глубине по­гружения этой поверхности. На рисунке показан так называемый «гидравлический пара­докс», здесь величины силы давления на дно всех сосудов одинаковы, независимо от формы стенок сосудов и их физической высоты, т.к. площади доньев у всех сосудов оди­наковы, одинаковы и величины давлений.

Сила давления на наклонную поверхность, погруженную в жидкость. Практическим примером такой поверхности может служить наклонная стенка сосуда. Для вывода урав-

нения и вычисления силы давления на стенку выберем следующую систему координат: ось ОХ направим вдоль пересечения плоскости свободной поверхности жидкости с на­клонной стенкой, а ось OZ направим вдоль этой стенки перпендикулярно оси ОХ. Тогда в качестве координатной плоскости XOZ будет выступать сама наклонная стенка. На плос­кости стенки выделим малую площадку Основное уравнение гидростатики - student2.ru , которую, в связи с малыми размерами можем считать горизонтальной. Величина давления на глубине площадки будет равна:

Основное уравнение гидростатики - student2.ru

где: h - глубина погружения площадки относительно свободной поверхности жидкости (по вертика­ли).

Основное уравнение гидростатики - student2.ru Сила Основное уравнение гидростатики - student2.ru давления Основное уравнение гидростатики - student2.ru dP на площадку:

Для определения силы давления

на всю смоченную часть наклонной стенки (часть площади стенки сосуда, расположенная ниже уровня свободной поверхности жидкости) необходимо проинтегрировать это урав­нение по всей смоченной части площади стенки S .

Основное уравнение гидростатики - student2.ru

Интеграл Основное уравнение гидростатики - student2.ru представляет собой статический момент площади S относительно

оси ОХ. Он, как известно, равен произведению этой площади на координату её центра тяжести zc. Тогда окончательно:

Основное уравнение гидростатики - student2.ru

Таким образом, сила давления на наклонную плоскую поверхность, погружённую в жидкость равна смоченной площади этой поверхности на величину давления в центре тя­жести этой площади. Сила давления на плоскую стенку кроме величины и направления характеризуется также и точкой приложения этой силы, которая называется центром дав­ления.

Центр давления силы атмосферного давления p0S будет находиться в центре тяже­сти площадки, поскольку атмосферное давление передаётся на все точки жидкости одина­ково. Центр давления самой жидкости на площадку можно определить исходя из теоремы о моменте равнодействующей силы. Согласно этой теореме момент равнодействующей

силы относительно оси ОХ будет равен сумме моментов составляющих сил относительно этой же оси.

Основное уравнение гидростатики - student2.ru

откуда: Основное уравнение гидростатики - student2.ru

где:- положение центра избыточного давления на вертикальной оси,

Основное уравнение гидростатики - student2.ru - момент инерции площадки S относительно оси ОХ.

Отсюда центр давления (точка приложения равнодействующей силы избыточного давления) расположен всегда ниже центра тяжести площадки. В сучаях, когда внешнней действующей силой на свободную поверхность жидкости является сила атмосферного давления, то на стенку сосуда будут одновременно действовать две одинаковые по вели­чине и противоположные по направлению силы обусловленные атмосферным давлением (на внутреннюю и внешнюю стороны стенки). По этой причине реальной действующей несбалансированной силой остаётся сила избыточного давления.

2.7. Сила давления на криволинейную поверхность, погружённую в жидкостьВыберем внутри покоящейся жидкости криволинейную поверхность ABCD, которая может быть частью поверхности некоторого тела погруженного в жидкость. Построим проекции этой поверхности на координатные плоскости. Тогда в координатной плоскости XOZ проекцией этой поверхности будет плоская поверхность Основное уравнение гидростатики - student2.ru , в координатной

плоскости YOZ — плоская поверхность Основное уравнение гидростатики - student2.ru и в плоскости свободной поверхности

жидкости (координатная плоскость ХОТ) - плоская поверхность Основное уравнение гидростатики - student2.ru . На криволи-

нейной поверхности выделим малую площадку dS, проекции которой на координатные

плоскости будут соответственно Основное уравнение гидростатики - student2.ru . Сила давления на криво­линейную поверхность dP будет направ­лена по внутренней нормали к этой по­верхности и может быть представлена в виде:

Горизонтальные составляющие мо­гут быть определены, как силы давления

' Основное уравнение гидростатики - student2.ru ' - на проекции Основное уравнение гидростатики - student2.ru малой площадки dS на соот-

ветствующие координатные плоскости:

Основное уравнение гидростатики - student2.ru

Основное уравнение гидростатики - student2.ru

Интегрируя эти уравнения, получим (как в случае с давлением на наклонную по­верхность):

Основное уравнение гидростатики - student2.ru

Вертикальная составляющая силы давления:

^ Основное уравнение гидростатики - student2.ru

Второй интеграл в этом равенстве представляет собой объём образованный рассмат­риваемой криволинейной поверхностью ABCD и её проекцией на свободную поверхность жидкости Основное уравнение гидростатики - student2.ru . Этот объём принято называть телом давления Основное уравнение гидростатики - student2.ru

Основное уравнение гидростатики - student2.ru

Таким образом, горизонтальные составляющие силы давления на криволинейную поверхность равны давлениям на вертикальные проекции этой поверхности, а вертикаль­ная составляющая равна весу тела давления, и силе внешнего давления на горизонтальную проекцию криволинейной поверхности.

Основные уравнения гидростатики широко используются на практике. Примероми могут служить простейшие гидравлические машины - гидравлический пресс, построен­ный по принципу сообщающихся сосудов и гидравлический аккумулятор.

Гидравлический пресс состоит из двух цилиндров приводного (1) и рабочего (2) со-

единеных между собой трубо­проводом и представляет систе­му сообщающихся сосудов. В приводном цилиндре перемеща­ется плунжер малого диаметра d, в рабочем цилиндре находит­ся поршень с большим диамет­ром D. Связь между плунжером и рабочим поршнем осуществ­ Основное уравнение гидростатики - student2.ru ляется через рабочую жидкость, заполняющую гидравлическую систему (сообщающиеся сосуды). Усилие F через рычаг передаются рабочей жидкости.

Сила давления на жидкость под плунжером Р] передаёт жидкости давление р, которое, в свою очередь, передаётся во все точки рабочего поршня.

Основное уравнение гидростатики - student2.ru

Тогда сила давления на поверхность рабочего поршеня будет равна'

Основное уравнение гидростатики - student2.ru

Таким образом, с помощью гидравлического пресса, приложенная к концу рычага

^ сила, увеличивается в Основное уравнение гидростатики - student2.ru раз.

Наши рекомендации