Уравнение Бернулли для элементарной струйки идеальной жидкости

Уравнение Бернулли для элементарной струйки идеальной жидкости дает связь между величиной гидро­динамического давления р и скоростью движения частицы u в любой фиксированной точке элементарной струйки. Для двух сечений 1-1 и 2-2:

Уравнение Бернулли для элементарной струйки идеальной жидкости - student2.ru .

С геометрической точки зрения здесь:

z – высота, отсчитываемая от плоскости сравнения до произвольной точки живого сечения, и называемая высотой положения.

Второе слагаемое уравнения - Уравнение Бернулли для элементарной струйки идеальной жидкости - student2.ru называют пьезометрической высотой или высотой давления.

Слагаемое Уравнение Бернулли для элементарной струйки идеальной жидкости - student2.ru принято называть скоростной высотой или скоростным напором.

Сумма высот положения и давления Уравнение Бернулли для элементарной струйки идеальной жидкости - student2.ru называется пьезометрическим напором.

Сумма пьезометрического и скоростного напоров, представляющая собой сумму трех членов уравнения Бернулли, называется полным напором H.

С энергетической точки зрения сумма трех членов уравнения Бернулли представляет собой полную удельную энергию движущейся жидкости (т.е. энергию частицы жидкости, отнесенную к единице ее веса).

Напомним, что все члены уравнения Бернулли, выраженные в единицах длины, отнесены к единице веса движущейся жидкости.

Так Уравнение Бернулли для элементарной струйки идеальной жидкости - student2.ru ,

где: L - символ длины;

F - символ силы ( веса );

A - символ работы;

Э - символ энергии.

Уравнение Бернулли для элементарной струйки идеальной жидкости - student2.ru

Рис. 3.2

Энергия, отнесенная к единице веса, как известно, называется удельной энергией. Таким образом, каждый из членов уравнения Бернулли представляет собой определенный вид удельной энергии движущейся жидкости.

Для выявления энергетического смысла уравнения Бернулли рассмотрим вначале некоторую часть элементарной струйки массой m и объемом W , обладающей скоростью u и испытывающей гидродинамическое давление p (рис. 3).

Если эта масса находится на высоте z от плоскости сравнения О - О, то потенциальная энергия массы струйки m, зависящая от положения, будет равна ее весу, умноженному на высоту поднятия, т.е. m.g.z , отсюда удельная потенциальная энергия положения будет равна:

Уравнение Бернулли для элементарной струйки идеальной жидкости - student2.ru

Таким образом, первый член уравнения Бернулли – z с энергетической точки зрения представляет собой удельную энергию положения движущейся жидкости.

Так как масса струйки занимает объем W и испытывает давление p, то потенциальная энергия давления будет p.W .Поскольку вес жидкости в объеме W можно выразить, как g.W, то удельная потенциальная энергия давления определится соотношением:

Уравнение Бернулли для элементарной струйки идеальной жидкости - student2.ru .

Отсюда видно, что в энергетическом смысле член Уравнение Бернулли для элементарной струйки идеальной жидкости - student2.ru в уравнении Бернулли представляет собой вид удельной потенциальной энергии, обусловленной гидродинамическим давлением и называемой удельной энергией давления движущейся жидкости.

Сумма удельных энергий положения и давления называется удельной потенциальной энергией движущейся жидкости - eп .

Уравнение Бернулли для элементарной струйки идеальной жидкости - student2.ru .

Третий член уравнения Бернулли Уравнение Бернулли для элементарной струйки идеальной жидкости - student2.ru выражает собой величину удельной кинетической энергии eк движущейся жидкости.

Действительно, кинетическая энергия, которой обладает масса m, движущаяся со скоростью u будет Уравнение Бернулли для элементарной струйки идеальной жидкости - student2.ru . Если же эту энергию отнести к единице веса (т.е. разделить на m.g), то легко получить, что

Уравнение Бернулли для элементарной струйки идеальной жидкости - student2.ru .

Отсюда видно, что сумма трех членов уравнения Бернулли представляет собой полную удельную энергию движущейся жидкости e , которая слагается из удельной потенциальной энергии eп (равной сумме удельной энергии положения и давления) и удельной кинетической энергии eк , т.е.

Уравнение Бернулли для элементарной струйки идеальной жидкости - student2.ru .

Переписав это уравнение для двух частиц (1 и 2), находящихся в одной элементарной струйке, или для двух положений одной и той же частицы движущейся жидкости, мы заметим, что

Уравнение Бернулли для элементарной струйки идеальной жидкости - student2.ru (1 – 9)

Т.е. сумма удельной потенциальной и кинетической энергии по длине элементарной струйки остается постоянной.

Уравнение Бернулли в форме (1 – 8) или (1 – 9) позволят четко определить взаимосвязь между удельной потенциальной и кинетической энергией и преобразованием одного вида энергии в другой (например, части потенциальной энергии в кинетическую или наоборот). Поэтому уравнение Бернулли представляет собой частное выражение общего закона сохранения энергии.

Резюмируя сказанное выше, энергетический смысл уравнения Бернулли можно кратко сформулировать следующим образом: при установившемся движении идеальной жидкости удельная энергия не изменяется по длине элементарной струйки.

Наши рекомендации