Потенциальная энергия упругих тел
Существует еще один вид потенциальной энергии, связанный с упругим взаимодействием молекул при небольших деформациях почти всех тел. Для наглядности рассмотрим сжатую пружину
где k — жесткость пружины; х — ее деформация.
Из приведенных примеров видно, что энергию можно накопить в форме потенциальной энергии (поднять тело, сжать пружину) для последующего использования. Кроме того, следует заметить,
что, если для кинетической энергии тела (частицы) существует единое универсальное выражение, то для потенциальной энергии такого выражения нет; аналитический вид формул для вычисления потенциальной энергии зависит от рассматриваемых сил. Потенциальная энергия всегда связана с той или иной силой, действующей со стороны одного тела на другое. Например, Земля силой тяжести действует на падающий предмет, сжатая пружина — на шарик, натянутая тетива — на стрелу. Потенциальная энергия это не то, что присуще самому телу: она всегда связана со взаимодействием тел.
Потенциальная энергия — это энергия, которой обладает тело благодаря своему положению по отношению к другим телам, или благодаря взаимному расположению частей одного тела.
Рассмотрим случай, когда в процессе движения тела работу совершают только консервативные силы. Тогда можно записать:
или
Таким образом, в данном случае сумма кинетической и потенциальной энергий тела осталась неизменной. Эта сумма называется полной механической энергией тела.
Полной механической энергией тела называется сумма его потенциальной и кинетической энергий:
Мы получили закон сохранения механической энергии.
Если в системе действуют только консервативные силы, то полная механическая энергия входящих в систему тел не изменяется: Е = const.
Иными словами, для любых двух моментов времени полные механические энергии одинаковы:
сохраняется, а лишь указывает условие, при котором такое сохранение имеет место: работу должны совершать только консервативные силы. В этом случае при движении тела происходит переход кинетической энергии в потенциальную или наоборот.
Если при движении на тело действуют не консервативные силы, которые совершают работу, то полная механическая энергия не сохраняется. В этом случае ее изменение равно этой работе:
Примеры
1) Падение камня
Тело падает на землю с высоты ho без начальной скорости, а силой сопротивления воздуха можно пренебречь (рис. 9.5). На тело действует только сила тяжести, которая является консервативной. Следовательно, полная механическая энергия сохраняется.
Закон сохранения энергии в механике имеет ограниченный характер. Он не утверждает, что механическая энергия всегда
Запишем закон сохранения энергии для двух положений: начального (1) и конечного (2) — тело подлетело к земле:
"| 74 Глава 9.
Законы сохранения
Глава 9. -| 75 Законы сохранения
В исходном положении скорость движения равна нулю и тело обладает только потенциальной энергией: £, = mghQ. При падении камня потенциальная энергия уменьшается, но увеличивается его кинетическая энергия. В конечной точке траектории высота равна нулю, скорость движения максимальна (ик) и тело обладает толь-
2) Движение велосипедиста по холмистой местности
Пусть велосипедист начинает скатываться с вершины холма и, пройдя ложбину, поднимается по инерции на соседний холм (рис. 9.6). Допустим, что сопротивлением воздуха и трением качения можно пренебречь. Тогда на велосипедиста действуют две силы: консервативная сила тяжести (mg) и сила нормального давления со стороны дороги (N). Последняя сила перпендикулярна направлению движения и работы не совершает. Поэтому полная механическая энергия велосипедиста сохраняется: £к + Еп. = const.
При спуске с холма потенциальная энергия переходит в кинетическую, которая достигает максимума у подножия холма. Далее велосипедист начинает вкатываться на другой холм. При этом кинетическая энергия переходит в потенциальную.
Рис. 9.6. Велосипедист, съезжающий с холма |
Если высота второго холма меньше высоты первого, то при подъеме на его вершину велосипедист израсходует не всю кинетическую
энергию. Поэтому он минует вершину и скатится с противоположного склона второго холма.
Если высота второго холма больше высоты первого, то велосипедист израсходует всю кинетическую энергию, не достигнув вершины, и остановится. Это произойдет на высоте, равной первоначальной. Для того, чтобы перевалить через вершину, велосипедист должен увеличить механическую энергию за счет работы ног.
В реальном случае велосипедист испытывает действие силы трения, которая совершает отрицательную работу. Поэтому, если велосипедист не работает ногами, полная механическая энергия сохраняться не будет:
Для того, чтобы поддерживать механическую энергию неизменной, велосипедист должен компенсировать отрицательную работу силы трения положительной работой своих мышц
Отсюда следует, что, чем меньше сила трения, тем меньшая работа требуется от мышц, тем меньше утомление и выше результаты. Поэтому фирмы, занимающиеся производством спортивной техники и спортивной одежды, ведут постоянные исследования, направленные на уменьшение силы трения.
В некоторых случаях механическая энергия сохраняется при передаче энергии от одного тела к другому. Например, потенциальная энергия, запасенная в натянутой тетиве лука, преобразуется в кинетическую энергию стрелы.
Энергетика прыжков