Вычисление прогибов на основе решения дифференциального уравнения изогнутой оси балки
Прогибы можно находить и другими способами, например, на основе решения дифференциального уравнения изогнутой оси балки. Для вывода этого уравнения, рассмотрим элемент балки (рис.16.6).
Рис. 16.6
Ясно, что чем больше , тем больше кривизна изогнутой оси балки.
Эту фразу можно записать в виде:
. (16.5)
Выразим кривизну через прогиб. Согласно формулам математического анализа:
Рис.16.7
По геометрическому смыслу производная это тангенс угла наклона кривой (рис16.7):
.
Ввиду малости прогибов угол также мал, поэтому
.
Тогда: (16.6)
Очевидно, что k зависит от геометрии сечения и материала балки. Найдем эту зависимость.
Рассмотрим малый элемент балки длины (рис. 16.3, 16.4). После изгиба он превратится в изогнутый элемент (рис.16.8). Длина волокна BC, которое проходит через центр тяжести сечения, не изменяется и будет равна . А нижнее волокно DH удлиняется на .
Рис.16.8
Вычисляем , учитывая, что . Согласно определению
.
Используя закон Гука и формулу Навье получаем
. (16.7)
Вычислим теперь по другому - через угол (рис.16.8). Из геометрии известна формула для вычисления длины дуги:
.
Тогда
. (16.8)
Приравниваем (16.7) и (16.8):
.
Отсюда получаем:
.
Учитываем, что согласно (16.6):
Окончательно получаем:
(16.9) |
Это и есть уравнение изогнутой оси балки.
Решение дифференциального уравнения изогнутой оси балки
Если балка имеет постоянную толщину, то есть , то решение легко записывается в общем виде:
(16.10)
(16.11)
Хотя решение получено в общем виде, однако основная трудность заключается в определении Мх иконстант C и D, поскольку на разных участках балки разные, а значит C и D также разные (в частности, если балка имеет три участка, то нужно определить 6 констант C и D).
Однако существует способ интегрирования, который сводит все неизвестные только к двум константам (разработан Клебшом)
Правила Клебша
Правила Клебша сводятся к следующему.
1) выражаем через внешние силы, которые лежат только слева (или только справа) от сечения.
2) Если погонная сила q не доходит до правого конца, то ее доводим до этого правого конца и уравновешиваем ее снизу (рис.16.9)
Рис.16.9
3) Если имеется сосредоточенный момент mо, то его вклад записываем в виде , где а - расстояние до момента mо.
4) Интегрируем, не раскрывая скобок.
При выполнении этих условий все константы С на разных участках будут одинаковы. Аналогично будут одинаковы все константы D.
Справедливость правил Клебша доказывается непосредственной проверкой, то есть подстановкой решения в условия стыковки решения на границе участков. Рассмотрим, например, случай, приведенный на рис.16.12.
рис16.12
По правилам Клебша момент на участках (1), (2) запишем в виде:
(1):
(2):
Дифференциальные уравнения на участках:
(1)
(2)
Решение этих уравнений на участках (1), (2) имеет вид:
Участок (1): .
Участок (2): .
Отсюда видно, что при S = a получим равенство углов наклона и прогибов, вычисленных по разным формулам при любых С и D, т.е. условия гладкости изогнутой оси выполняются. Аналогично проверяются условия гладкости на границе участка, на которой заканчивается погонная сила q.
16.2.3 Условия для определения С и D
1) Первый случай .Рассмотрим балку, лежащую на двух опорах (см. рис.16.10).
Рис. 16.10 | Рис. 16.11 |
Из схемы видно, что
(16.13)
Таким образом, получаем систему уравнений для С и D.
2) Второй случай. Пусть балка заделана на расстоянии (консольная балка, см. рис.16.10).
В заделке не может появиться наклона оси, поэтому там не только нет прогиба, но и .
Таким образом, из схемы следует, что:
(16.14)
Опять получили два уравнения для С и D.