Виды насадков и их применение

Насадкой называется отрезок трубы, длина которого в несколько раз больше внутреннего диаметра. Рассмотрим случай, когда к отверстию в стенке резервуара присоединен насадок диаметром d, равным внутреннему диаметру отверстия.

На рис. (10.2) показаны наиболее распространенные виды насадок, применяемые на практике:

а - цилиндрический внешний; б -конический расходящийся; в - конический сходящийся; ; г - цилиндрический внутренний; д - коноидальный; е - комбинированный.

Виды насадков и их применение - student2.ru

Рис 10.2 Виды насадков

Цилиндрические насадки встречаются в виде деталей гидравлических систем машин и сооружений. Конические сходящиеся и коноидальные насадки применяют для увеличения скорости и дальности полета струи воды (пожарные брандспойты, стволы гидромониторов, форсунки, сопла и др.).

Конические расходящиеся насадки применяют для уменьшения скорости и увеличения расхода жидкости и давления на выходе во всасывающих трубах турбин и др. В эжекторах и инжекторах также имеются конические насадки, как основной рабочий орган.

Рассмотрим действие внешнего цилиндрического насадка (рис.10.3).

Струя жидкости при входе в насадок сжимается, а потом расширяется и заполняет все сечение. Вследствие разряжения в сжатом сечении насадка жидкость может подсасываться из резервуара, скорость протекания жидкости во входном отверстии возрастает. Из насадка струя вытекает полным сечением, поэтому коэффициент сжатия, отнесенный к выходному сечению, Виды насадков и их применение - student2.ru , а коэффициент расхода. Из насадка струя вытекает полным сечением, поэтому коэффициент сжатия, отнесенный к выходному сечению, Виды насадков и их применение - student2.ru , а коэффициент расхода насадка Виды насадков и их применение - student2.ru будет возрастать, в сравнении с истечением жидкости через отверстие в тонкой стенке. Однако при использовании насадка, появляются дополнительные потери из-за трения жидкости о внутренние стенки насадка и расширения струи в нем. Коэффициент цилиндрического насадка зависит от числа Виды насадков и их применение - student2.ru и относительной длины Виды насадков и их применение - student2.ru , в среднем, его значение может быть принято Виды насадков и их применение - student2.ru .

Виды насадков и их применение - student2.ru

Рис.10.3 Внешний цилиндрический насадок

Виды насадков и их применение - student2.ru

Таким образом, уравнения для определения скорости и расхода жидкости через насадок имеют тот же вид, что и для отверстия, но другие значения коэффициентов

Сравнивая коэффициенты расхода и скорости для насадка и отверстия в тонкой стенке, устанавливаем, что насадок увеличивает расход и уменьшает скорость истечения.

Во внутренних цилиндрических насадках сжатие струи на входе больше, чем у внешних, и поэтому значения коэффициентов расхода и скорости меньше. Опытами найдены коэффициенты для воды Виды насадков и их применение - student2.ru .

В наружных конических сходящихся насадках сжатие и расширение струи на входе меньше, чем в наружных цилиндрических, но появляется внешнее сжатие на выходе из насадки. Поэтому коэффициенты Виды насадков и их применение - student2.ru , Виды насадков и их применение - student2.ru и Виды насадков и их применение - student2.ru зависят от угла конусности. С увеличением угла конусности до 13° коэффициент расхода насадка Виды насадков и их применение - student2.ru растет, а с дальнейшим увеличением угла уменьшается.

Конические сходящиеся насадки применяют в тех случаях, когда нужно получить большую выходную скорость струи, дальность полета и силу удара струи (гидромониторы, пожарные стволы и т. п.).

В конических расходящихся насадках внутреннее расширение струи после сжатия больше, чем в конических сходящихся и цилиндрических, поэтому потери напора здесь возрастают и коэффициент скорости Виды насадков и их применение - student2.ru уменьшается. Внешнего сжатия при выходе нет.

Коноидальные насадки имеют очертания формы струи, вытекающей через отверстие в тонкой стенке. Для этих насадок значение коэффициентов составляет: Виды насадков и их применение - student2.ru .

Их применяют в пожарных брандспойтах, хотя, изготовление их очень сложное.

Гидравлический удар

Гидравлический удар представляет собой колебательный процесс, возникающий в трубопроводе с капельной жидкостью при внезапном изменении скорости ее движения. Этот про­цесс характеризуется чередованием резких повышении и по­нижений давления, происходящих за достаточно малый проме­жуток времени.

Гидравлический удар возникает вследствие быстрого зак­рытия или открытия задвижки, внезапной остановки насосов или турбин, аварии на трубопроводе (разрыв, нарушение стыка) и других причин.

Повышение или понижение давления в трубопроводе при гидравлическом ударе объясняется инерцией массы жидкости, движущейся в нем.

Этот вид неустановившегося движения жид­кости в трубах часто встречается в практике эксплуатации тру­бопроводов и весьма важен для специалистов, работающих в области монтажа и эксплуатации санитарно-технических уст­ройств.

Впервые гидравлический удар в трубах был изучен Н.Е. Жуковким, который в 1898 г. дал теоретическое обоснование этого явления и предложил метод его расчета.

Рассмотрим упрощенную модель гидравлического удара. Пусть жидкость вытекает из резервуара, размеры которого велики и уровень воды в нем остается постоянным. Режим движения жидкости стационарный, характеристики движения зависят только от продольной координаты. В момент времени Виды насадков и их применение - student2.ru затвор мгновенно закрылся, частицы жидкости, соприкасающиеся c затвором мгновенно остановятся, их скорость движении будет погашена, кинетическая энергия потока пойдет на сжатие жидкости и расшире­ние стенок трубы. Вследствие сжатия жидкости давление в ней увеличивается. Таким образом, непосредственно у крана возникнет ударная волна, На остановившиеся частицы жидкости у крана набегают другие, соседние с ними частицы и тоже теряют свою скорость, в результате чего сечение передвигается по трубопроводу от крана к резервуару. Когда ударная волна достигнет резервуара, вся жидкость в трубе от резервуара до крана будет остановлена и сжата, т.е. во всей трубе скорость равна нулю, а давление максимально.

Как только ударная волна дойдет до резервуара, давление жидкости во всей трубе будет больше давления в резер­вуаре, поэтому в следующий момент времени жидкость станет поступать из трубы в резервуар. После прихода ударной волны к резервуару вновь начнется движение жидкости к крану, так будет продолжаться до тех пор, пока колебания не затухнут вследствие потерь энергии на трение и деформацию стенки трубы.

Максимальное давление, возникающее в результате гидравлического удара, рассчитывается по формуле

Виды насадков и их применение - student2.ru , (10.9)

гдеВиды насадков и их применение - student2.ru- скорость распространения звука в воде, Виды насадков и их применение - student2.ru , зависящая от модуля упругости жидкости и стенок трубопровода.

Если стенки трубы упругие, а модуль упругости жидкости составит Виды насадков и их применение - student2.ru , то при температуре воды 10 Виды насадков и их применение - student2.ru скорость звука в жидкости принимается Виды насадков и их применение - student2.ru Виды насадков и их применение - student2.ru . Наблюдаемые скорости ударной волны могут быть значительно ниже, что связано с наличием нерастворенного воздуха, и твердых частиц, которые изменяют модуль упругости жидкости.

Процесс гидравлического удара зависит от того, как быстро закрывается или открывается запорное устройство, при медленном закрытии задвижки, давление можно значительно снизить.

Наши рекомендации